Search Results

You are looking at 31 - 40 of 272 items for :

  • blueberry breeding x
  • All content x
Clear All
Free access

Rajeev Arora and Lisa J. Rowland

and with high midwinter-hardiness did not always exhibit high DA resistance, which is perhaps related to other climatic and developmental factors. Others have also made similar observations; among blueberry cultivars ( Rowland et al., 2005 ), potato

Free access

Adam Dale

Genetic variation in the architecture of berry crops will be reviewed. Examples will be given where changes in plant architecture have given increased yields, stabilized yields and improved fruit quality in strawberry, raspberry, highbush blueberry and currants.

Red raspberry will be emphasised as recent research on the architecture of the fruiting cane has enabled breeding strategies, based on plant architecture, to be developed.

Free access

Mark K. Ehlenfeldt, Allan W. Stretch, Nicholi Vorsa, and Arlen D. Draper

'Cara's Choice' is a mid-season ripening, tetraploid, hybrid blueberry (Vaccinium × 'Cara's Choice') that was developed by the cooperative breeding program of the Agricultural Research Service of the U.S. Department of Agriculture (USDA) and the New Jersey Agricultural Experiment Station (NJAES). 'Cara's Choice' was given its name in recognition of its excellent fruit quality with improved sweetness, firmness, and flavor.

Free access

Mark K. Ehlenfeldt, Allan W. Stretch, Nicholi Vorsa, and Arlen D. Draper

'Hannah's Choice' is an early-ripening, tetraploid, highbush blueberry (Vaccinium corymbosum L.) that was developed by the cooperative breeding program of the Agricultural Research Service of the U.S. Department of Agriculture (USDA) and the New Jersey Agricultural Experiment Station (NJAES). It was named because it represents an improvement in sweetness, firmness, and flavor over currently grown early cultivars.

Full access

M.K. Ehlenfeldt, A.D. Draper, and J.R. Clark

In the 1970s, the U.S. Department of Agriculture (USDA) began developing low-chill-adapted highbush blueberry (Vacchizium corymbosum L.) for the southern United States (lat. 29° to 32°N) by using germplasm of the native southern species, V. darrowi Camp. This breeding work resulted in the release of several low-chill southern highbush blueberry (SHB) cultivars in the mid-1980s. These cultivars have been evaluated for yield and adaptation at several locations through the southern regional blueberry germplasm evaluation trials. These trials have shown that organic mulch is required for good performance of SHB. The one-fourth V. darrowi composition of SHB cultivars presents problems of freeze damage at some locations. This problem may be resolved by breeding cultivars through several alternative approaches.

Free access

Donald J. Merhaut and Rebecca L. Darnell

Commercial blueberry production is limited primarily to soils where ammonium, rather than nitrate, is the predominant N form. However, Vaccinium arboreum, a species native to northern Florida, often is found growing in soils where nitrate is the major N form. This species may serve as a breeding source or rootstock for commercial blueberries, expanding the potential soil types that may be used for blueberry cultivation. In our study, in vivo nitrate reductase activity (NRA) was measured in roots and leaves of 2-year-old seedlings of V. arboreum and a commercial cultivar, V. corymbosum `Sharpblue'. Plants were grown hydroponically in sand culture and fertilized with a modified Hoagland's solution containing N as either ammonium, ammonium nitrate, or nitrate. Vaccinium arboreum averaged nitrite at 200, 60, and 20 nmol/g fresh weight per h for nitrate, ammonium nitrate, and ammonium fertilized plants, respectively. `Sharpblue' root NRA was significantly lower, averaging nitrite 50, 38, and 8 nmol/g fresh weight per h for nitrate, ammonium nitrate, and ammonium fertilized plants, respectively. NRA was much lower in leaves than roots of V. arboreum, averaging nitrite at ≈15 nmol nmol/g fresh weight per h across N treatments. No NRA was detected in the leaves of `Sharpblue', regardless of N treatment. These data suggest that V. arboreum may be used as a rootstock or breeding source to expand blueberry production into soil types that are higher in nitrate than the soils typically used for blueberry production.

Free access

Mark K. Ehlenfeldt

Inbreeding coefficients were calculated for highbush blueberry (Vaccinium corymbosum L.) cultivars based on a tetrasomic inheritance model. This model yielded lower inbreeding coefficients than previous calculations based on a disomic tetraploid inheritance model. Recent trends in breeding have resulted in significant use of V. darrowi Camp as a source of low-chilling germplasm for use in the southern United States. There is also a trend toward increased inbreeding in several crosses from which recently released cultivars have been derived. Increased inbreeding coefficients do not represent a detrimental situation in blueberry per se.

Free access

Mark K. Ehlenfeldt and Robert B. Martin Jr.

Eighty-seven highbush blueberry and species-introgressed blueberry cultivars were evaluated for fruit firmness in the 1998-2000 growing seasons with a FirmTech 1 automated firmness tester. Significant differences were observed among cultivars. An average firmness of 136.1 g·mm-1 of deflection (g·mm-1 dfl) was observed across all studied cultivars, and a range of 80.4 g·mm-1 dfl (`Herbert') to 189.0 g·mm-1 dfl (`Pearl River'). Species ancestry was not consistently related to firmness; however, cultivars with higher firmness values often possessed a higher percentage of Vaccinium darrowi Camp and V. ashei Reade ancestry. Conversely, cultivars with softer than average fruit often possessed a higher percentage of lowbush (V. angustifolium Ait.) ancestry. This information may help to identify sources of breeding material for increased firmness in highbush blueberry hybrids.

Free access

Duane W. Greene

occurring, the extent of production, and the primary blueberry species responsible for this production. Chapter 2 first reviewed the taxonomy of the blueberry. Breeding efforts past and present were discussed next, followed by a description of

Free access

Ann Marie Connor, James J. Luby, and Cindy B.S. Tong

Variation in antioxidant activity (AA), total phenolic content (TPH), and total anthocyanin content (ACY) was examined in 1998 and 1999 in fruit of 52 (49 blue-fruited and 3 pink-fruited) genotypes from a blueberry breeding population. The species ancestry included Vaccinium corymbosum L. (northern highbush blueberry), V. angustifolium Ait. (lowbush blueberry), V. constablaei Gray (mountain highbush blueberry), V. ashei Reade (rabbiteye blueberry), and V. myrtilloides Michx. (lowbush blueberry). Using a methyl linoleate oxidation assay (MeLO) on acidified methanolic extracts of the berries, a 5-fold variation was found in AA in 1998 and a 3-fold variation in 1999 among the blue-fruited genotypes. Analyses of variance (ANOVA) revealed variation among genotypes (P < 0.0001) in single and combined years, regardless of inclusion of pink-fruited selections and adjustment for berry size. While mean AA of all genotypes did not change between the 2 years, ranking of some genotypes for AA changed significantly between 1998 and 1999. Of the 10 genotypes that demonstrated the highest AA in 1998, four were among the 10 genotypes that demonstrated highest AA in 1999. Similarly, of the 15 genotypes with the highest AA, 10 were the same both years. As with AA, mean TPH of all genotypes did not change between years and ANOVA demonstrated genotypic variation regardless of adjustment for berry size/weight or exclusion of pink-fruited selections. Changes in genotype rank occurred between years. The difference in TPH between lowest- and highest-ranking blue-fruited genotypes was ≈2.6-fold in both 1998 and 1999. Seven of the 10 highest-ranking genotypes were the same both years and TPH correlated with AA (r = 0.92, P < 0.01) on a genotype mean basis for combined years. ACY correlated less well with AA (r = 0.73, P < 0.01 for combined years). When genotypes were categorized into six groups according to species ancestry, V. myrtilloides and V. constablaei × V. ashei crosses ranked highest and second highest, respectively, for AA in both years. The groups comprised of V. corymbosum genotypes, V. angustifolium genotypes, and those with both V. corymbosum and V. angustifolium in their lineage were indistinguishable from each other. Samples from some of the genotypes were analyzed for oxygen radical absorbance capacity and ferric-reducing antioxidant power, and these aqueous-based antioxidant assays correlated well with the lipid emulsion-based MeLO (all r ≥ 0.90, P < 0.01). The three antioxidant assays may be equally useful for screening in a blueberry breeding program and the choice of assay may depend on the goal of the program and the resources available.