Search Results

You are looking at 21 - 30 of 504 items for :

  • SSR markers x
  • All content x
Clear All
Free access

Xinwang Wang, Robert N. Trigiano, Mark T. Windham, Renae DeVries, Timothy A. Rinehart, James M. Spiers, and Brain Scheffler

The genus Cornus consists of many species, of which C. florida, C. kousa, C. mas, and C. stolonifera are four main ornamental species in North America, Asia, and Europe. For example, over 200 cultivars of C. florida alone have been developed for the nursery industry. Microsatellite loci, or SSR, are useful markers for studying genetic diversity and for creating linkage maps of the various species. The objective of this study was to investigate the genetic diversity between these four Cornus species and eight hybrids. Evaulation of the diversity will be useful in assessing the selection pressure of breeders and/or genetic drift of these dogwood cultivars/lines. Fifteen SSR primer pairs were selected to examine 56 Cornus cultivars and/or lines of the four species and hybrids. The study included 28 C. florida cultivars and lines, 15 C. kousa cultivars and lines, four C. stolonifera cultivars, one cultivar of C. mass and eight hybrids between various Cornus species. An exceptionally high level of diversity was detected among the 56 entries in both the number and size range of SSR alleles. A total of 95 alleles with an average of 7.8 alleles per loci were detected among these 56 genotypes. These selected Cornus cultivars and/or lines could be clustered into four to six subgroups. Some Cornus species were integrated into other species groups, suggesting gene flow between species via the breeding or evolution. SSR markers can contribute to the exploitation of genetic diversity for existing Cornus germplasm. For further study, examination of more SSR loci could explain more completely the diversity among these Cornus cultivars and lines.

Free access

A. Levi, C.E. Thomas, T. Trebitsh, A. Salman, J. King, J. Karalius, M. Newman, O.U.K. Reddy, Y. Xu, and X. Zhang

Seventy-one amplified fragment length polymorphism (AFLP), 93 sequence related amplified polymorphism (SRAP), and 14 simple sequence repeat (SSR) markers were used to extend an initial genetic linkage map for watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. The initial map was based on 151 randomly amplified polymorphic DNA (RAPD) and 30 and inter-simple sequence repeat (ISSR) markers. A testcross population previously used for mapping of RAPD and ISSR markers was used in this study: {plant accession Griffin 14113 [C. lanatus var. citroide (L.H. Bailey) Mansf.] × the watermelon cultivar New Hampshire Midget (C. lanatus var. lanatus)} × PI 386015 [C. colocynthis (L.) Schrad.]. The linkage map contains 360 DNA markers distributed on 19 linkage groups, and covers a genetic distance of 1976 cM with an average distance of 5.8 cM between two markers. A genomic DNA clone representing 1-amino-cyclopropane-1-carboxylic acid (ACC-) synthase gene, involved in ethylene biosynthesis, was also mapped. As in previous mapping studies for watermelon, a large number of AFLP and SRAP markers were skewed away from the 1:1 segregation ratio, and had to be excluded from the final mapping analysis. The stringent mapping criteria (JoinMap 3.0 mapping program) produced linkage groups with marker order consistent with those reported in previous mapping study for watermelon.

Free access

E.J. Parks, J.W. Moyer, and J.H. Lyerly

Fluorescent amplified fragment length polymorphism (F-AFLP) and microsatellites (SSRs) were used to evaluate new guinea impatiens (Impatiens hawkeri W. Bull) cultivars. Ninety-five quality-selected polymorphic fragments from 10 F-AFLP+3 primer combinations were used to evaluate 100 cultivars representing a variety of colors, forms, and breeding programs. Jaccard similarities and unweighted pair-group method of the arithmetic average (UPGMA) clustering formed a dendrogram with three cultivar groups, to a large extent clustering the cultivars by breeder with a high cophenetic correlation coefficient. A small insert genomic library was created and 442 kb of new guinea impatiens sequence was screened for repetitive motifs, resulting in 14 microsatellite markers. A subset of 46 cultivars representing five commercial breeding companies and 11 cultivar series was selected for microsatellite analysis. Seven loci were polymorphic, with two to six alleles per locus. Although both methods were equally effective in distinguishing the cultivars from one another, the topologies of the dendrograms for the two methods were different. The topology of the AFLP dendrogram reflected possible relationships based on cultivar series and breeding company, while the SSR dendrogram did not. The objectives of this research were to develop and validate both F-AFLP and SSR methodologies for new guinea impatiens, identify markers that can be reliably used for fingerprinting, and create a database for future cultivar comparisons.

Free access

Anna Hale and Mark W. Farnham

Private and public vegetable breeders are interested in using current and emerging PCR-based marker systems in their respective improvement programs. However, before new systems are employed to replace existing ones, the new systems must prove to be efficient and cost-effective alternatives. Sequence related amplified polymorphisms (SRAPs), amplified fragment length polymorphisms (AFLPs), and simple sequence repeats (SSRs) were compared for their ability to differentiate individuals of a diverse group of 24 elite broccoli (Brassica oleracea L. italica) inbreds. Genomic DNA was assayed using 24 AFLP, 24 SRAP, and 44 SSR primer pairs. In this assessment, SSRs produced an average of only two bands per primer, with 25% of these bands being monomorphic, and the remaining bands detecting very few differences among the inbreds. Although the AFLP method resulted in a lower rate (63%) of polymorphism than the SSRs, it produced about 20 bands per primer. SRAPs produced an average of 14 bands per primer, with 82% of these bands being polymorphic. Since AFLP and SRAP markers had a higher multiplex ratio and SSRs were frequently monomorphic, AFLP and SRAPs were more effective in differentiating the elite broccoli inbreds examined in this study. Similarity matrices were generated from the AFLP and SRAP data, and resulting dendographs were compared.

Free access

Juan J. Ruiz, Santiago García-Martínez, Belén Picó, Muquiang Gao, and Carlos F. Quiros

We studied the genetic variability of some traditional tomato (Lycopersicon esculentum L. Mill.) cultivars of Spain, and established their relationships using both simple sequence repeats (SSR) and sequence related amplified polymorphism (SRAP) markers. These included cultivars from different locations of three main types, Muchamiel, De la pera, and Moruno. Additionally we tested two other local cultivars, `Valenciano' and `Flor de Baladre', plus a small sample of commercial cultivars and a few wild species. Both types of markers resolved the cultivars from different groups, but SSR failed to distinguish some of those classified under the same group. All the De la pera cultivars clustered together by genetic similarity with the SRAP markers. The other traditional cultivars, which are grown in a wider geographic range, formed a more diffuse group, which included the commercial cultivar Roma. The Mexican cultivar Zapotec, a breeding line, and the virus-resistant commercial hybrid `Anastasia' were the most distant of all the cultivars. The latter hybrid had higher similarity to the wild species due to introgressed segments from them carrying the resistance genes. Similar results were observed for SSR markers but with a lower level of resolution. This information would be useful to facilitate tomato germplasm conservation and management efforts.

Free access

Jaeho Yoon, Dongcheng Liu, Wonseob Song, Weisheng Liu, Aimin Zhang, and Shaohua Li

The genetic relationships among 96 peach and nectarine [Prunus persica (L.) Batsch.] genotypes and botanical varieties originating from different ecogeographical regions of China, Japan, North America, and South Korea were evaluated with 33 SSR markers screened from 108 published SSR markers developed for peach or sweet cherry (P. avium L.). The 33 SSRs detected polymorphisms among 96 genotypes and revealed a total of 283 alleles with an average of 8.6 alleles per locus. The polymorphism information content (PIC) value ranged from 0.40 (BPPCT041) to 0.98 (BPPCT009) with an average of 0.80. Unweighted pair group method average (UPGMA) cluster analysis based on Nei's genetic distances classified genotypes into six groups, corresponding to their ecogeographical origin. Group I consisted of northern Chinese and northwestern Chinese local cultivars, and was divided into two subgroups, white and yellow peaches. Group II contained mainly southern Chinese local, Japanese, and North American cultivars and can be divided into four subgroups: Japanese white, Chinese flat, North American yellow, and some Chinese local ornamental peach cultivars. Groups III, IV, and V were comprised of Chinese local ancient cultivars, and contained `Xinjiangdatianren' and `Renmiantao', Chinese dwarf cultivars, and `Fenshouxing', respectively. Group VI had only `Baishanbitao', a Chinese ornamental cultivar. Northern and northwestern Chinese local cultivars clustered together with a greater diversity than southern Chinese local cultivars, indicating that the northern and northwestern Chinese local cultivars are similar ecotypes, and southern Chinese local cultivars are a subset of the northern Chinese group. Moreover, the Japanese and North American genotypes had a close phylogenetic relationship with southern Chinese local cultivars. The taxonomic placement of P. ferganensis (Kost. et Kiab) Kov. et Kost. and the phylogenetic relationship of `Baishanbitao' with peaches are discussed.

Free access

K.S. Lewers, S.M.N. Styan, S.C. Hokanson, and N.V. Bassil

Although simple sequence repeat (SSR) markers have been developed for species in the closely related genera Fragaria L. (strawberry) and Rubus L. (raspberry and blackberry), the number of SSRs available is insufficient for genetic mapping. Our objective was to use and compare multiple approaches for developing additional SSRs for Fragaria and Rubus. The approaches included: the development of SSRs from GenBank sequences from species of varied relatedness to Fragaria and Rubus and identified with two different data-mining methods (BLAST and SSRIT); the evaluation of some previously published SSRs designed from related species; and the development of SSRs from a genomic library made from F. ×ananassa Duschene ex Rozier `Earliglow'. When an SSR was developed from a known gene sequence, the location of the repeat in the gene was determined to evaluate the effect on amplification and polymorphism detection. Cross-generic amplification between closely related Fragaria and Rubus as well as transference from species of varied relatedness to Fragaria and Rubus also was evaluated and indicated limited transference within the subfamily Rosoideae. However, development of SSRs for Fragaria and Rubus from Rosa L. (rose) and Rosaceae genera outside Rosoideae was not efficient enough to be practical for new map development. SSRIT was superior to BLAST for identifying GenBank sequences containing repeats. SSRs developed from repeats found in either the 5′UTR (80% polymorphic) or 3′UTR (85% polymorphic) were most likely to detect polymorphisms, compared with those developed from coding regions (30%). SSRs developed from the genomic library were only slightly superior to GenBank-derived SSRs in their ability to detect polymorphisms.

Free access

Thomas M. Davis, Laura M. DiMeglio, Ronghui Yang, Sarah M.N. Styan, and Kim S. Lewers

The cultivated strawberry, Fragaria ×ananassa Duchesne ex Rozier, originated via hybridization between octoploids F. chiloensis (L.) Mill. and F. virginiana Mill. These three octoploid species are thought to share a putative genome composition of AAA`A'BBB`B'. Diploid F. vesca L., is considered to have donated the A genome. Current attention to the development of a diploid model system for strawberry genomics warrants the assessment of simple sequence repeat (SSR) marker transferability between the octoploid and diploid species in Fragaria L. In the present study, 23 SSR primer pairs derived from F. ×ananassa `Earliglow' by genomic library screening were evaluated for their utility in six diploid Fragaria species, including eight representatives of F. vesca, four of F. viridis Weston, and one each of F. nubicola (Hook. f.) Lindl. ex Lacaita, F. mandshurica Staudt, F. iinumae Makino, and F. nilgerrensis Schltdl. ex J. Gay. SSR primer pair functionality, as measured by amplification success rate (= 100% - failure rate) in each species, was ranked (from highest to lowest) as follows: F. vesca (98.4%) > F. iinumae (93.8%) = F. nubicola (93.8%) > F. mandshurica (87.5%) > F. nilgerrensis (75%) > F. viridis (73.4%). The extent to which these octoploid-derived SSR primer pairs generated markers that could be added to the F. vesca linkage map also was assessed. Of the 13 F. ×ananassa SSR markers that segregated codominantly in the F. vesca mapping population, 11 were assigned to linkage groups based upon close linkages to previously mapped loci. These markers were distributed over six of the seven F. vesca linkage groups, and can serve as anchor loci defining these six groups for purposes of comparative mapping between F. vesca and F. ×ananassa.

Free access

J. Steven Brown, R.J. Schnell, J.C. Motamayor, Uilson Lopes, David N. Kuhn, and James W. Borrone

A genetic linkage map was created from 146 cacao trees (Theobroma cacao), using an F2 population produced by selfing an F1 progeny of the cross Sca6 and ICS1. Simple sequence repeat (SSR) markers (170) were used principally for this map, with 12 candidate genes [eight resistance gene homologues (RGH) and four stress related WRKY genes], for a total of 182 markers. Joinmap software was used to create the map, and 10 linkage groups were clearly obtained, corresponding to the 10 known chromosomes of cacao. Our map encompassed 671.9 cM, approximately 100 cM less than most previously reported cacao maps, and 213.5 cM less than the one reported high-density map. Approximately 27% of the markers showed significant segregation distortion, mapping together in six genomic areas, four of which also showed distortion in other cacao maps. Two quantitative trait loci (QTL) for resistance to witches' broom disease were found, one producing a major effect and one a minor effect, both showing important dominance effects. One QTL for trunk diameter was found at a point 10.2 cM away from the stronger resistance gene. One RGH flanked the minor QTL for witches' broom resistance, implying possible association. QTLs mapped in F2 populations produce estimates of additive and dominance effects, not obtainable in F1 crosses. As dominance was clearly shown in the QTL found in this study, this population merits further study for evaluation of dominance effects for other traits. This F2 cacao population constitutes a useful link for genomic studies between cacao and cotton, its only widely grown agronomic relative.

Free access

Pilar Soengas, Pablo Velasco, Guillermo Padilla, Amando Ordás, and Maria Elena Cartea

Brassica napus includes economically important crops such as oilseed rape, rutabaga, and leaf rape. Other vegetable forms of Brassica napus, namely nabicol and couve-nabiça, are grown in northwestern Spain and north of Portugal, respectively, and their leaves are used for human consumption and fodder. The relationship of nabicol with other Brassica napus leafy crops was studied before, but its origin remained unclear. The aims of this work were to study the genetic relationships among nabicol landraces and other B. napus crops based on microsatellites and to relate the genotypic differences with the use of the crop. The relationship among 35 Brassica napus populations representing different crops was studied based on 16 microsatellite markers. An analysis of molecular variance was performed partitioning the total variance into three components. The source of variation resulting from groups was defined considering the main use of the crop and accounted for a smaller percentage of variation than other sources of variation, proving that this division is not real. Populations clustered into seven different clusters using a similarity coefficient of 0.82. No clear association was evident between clusters and the main use of populations, suggesting genetic differences among populations could reflect differences in their origin/breeding or domestication. Spanish nabicol could have originated from a sample of couve-nabiças, and couve-nabiças could be used to improve nabicol landraces, because they have a narrow genetic basis that limits their potential for breeding.