Search Results

You are looking at 21 - 30 of 245 items for :

  • "yield efficiency" x
  • All content x
Clear All
Free access

Anita N. Miller, Porter B. Lombard, Melvin N. Westwood, and Robert L. Stebbins

`Napoleon' grafted onto Colt, F/12-1, and MxM60 rootstock were planted into three types of tree holes: augered; backhoed, and backhoed plus fumigation. The auger treatment resulted in lower yields, smaller trunk cross-sectional area (TSCA), and smaller canopy volume when compared to backhoed holes. Fumigation had no significant effect. Trees on Colt rootstock were more precocious, had a smaller TCSA and canopy volume, greater cumulative yield efficiency, and, in 1987, the smallest fruit weight. The yield efficiency of Colt was the highest until 1988, when it was surpassed by MxM60, but was still similar to F/12-l. Yields were highest on trees of MxM60 in 1987 and 1988.

Free access

Matthew D. Whiting, Gregory Lang, and David Ophardt

Traditional sweet cherry (Prunus avium L.) training systems in the United States are based upon vigorous rootstocks and multiple leader vase canopy architectures. The sweet cherry research lab at Washington State University has been investigating the potential of new rootstocks and training systems to improve production efficiency and produce high quality fruit. This paper describes the effects of three rootstocks—Mazzard (P. avium), `Gisela 6', and `Gisela 5' (P. cerasus × P. canescens)—and four training systems—central leader, multiple-leader bush, palmette, and y-trellis—on `Bing' sweet cherry tree vigor, fruit yield and quality over a seven year period. Compared to trees on Mazzard, trees on `Gisela 5' and `Gisela 6' had 45% and 20% lower trunk cross-sectional areas after 7 seasons, respectively. Trees on `Gisela 6' were the most productive, yielding between 13% and 31% more than those on `Gisela 5' and 657% to 212% more than trees on Mazzard, depending on year. Both Gisela rootstocks significantly improved precocity compared to Mazzard, bearing fruit in year 3 in the orchard. Canopy architecture had only moderate effects on tree vigor and fruit yield. Across rootstocks, bush-trained trees were about 25% less productive compared to the other systems, which exhibited similar cumulative yields (102 kg/tree). Fruit weight was negatively and closely (r 2 = 0.84) related to tree yield efficiency (kg·cm–2). Crop value was related positively to fruit yield.

Free access

Richard C. Funt, Mark C. Schmittgen, and Glen O. Schwab

The performance of peach trees [Prunus persica (L.) Batsch cv. Redhaven/Siberian C.] on raised beds as compared to the conventional flat (unraised) orchard floor surface was evaluated from 1982 to 1991. The raised bed was similar to the flat bed in cation exchange capacity (CEC), Ca, P, K, Mg, B, and Zn soil levels in the 0-15 cm depth. Microirrigation, using two 3.7 L.h-1 emitters per tree vs. no irrigation, was applied to trees planted in a north-south orientation on a silt loam, noncalcareous soil. Raised beds increased trunk cross-sectional area (TCA) and yield-efficiency over 5 years. Irrigation increased fruit mass mostly in years of highest evaporation. Significant year to year variations occurred in yield, fruit mass, TCA and yield efficiency. There were significant bed × year interactions for yield and TCA. Irrigation increased leaf boron content regardless of bed type. Leaf potassium was higher in flat beds. Nonirrigated trees had the lowest tree survival on the flat bed, but the opposite was true on the raised bed.

Free access

Carlos Miranda Jiménez and J. Bernardo Royo Díaz

Spring frosts are usual in many of Spain's fruit-growing areas, so it is common to insure crops against frost damage. After a frost, crop loss must be evaluated, by comparing what crop is left with the amount that would have been obtained under normal conditions. Potential crop must be evaluated quickly through the use of measurements obtainable at the beginning of the tree's growth cycle. During the years 1997 through 1999 and in 86 commercial plots of peach and nectarine [Prunus persica (L.) Batsch], the following measurements were obtained: trunk cross-sectional area (TCA, cm2), trunk cross sectional area per hectare (TCA/ha), estimated total shoot length per trunk cross-sectional area (SLT, shoot m/cm2 TCA), crop density (CD, amount of fruit/cm2 TCA), fruit weight (FW, g), yield efficiency (YE, kg of fruit/cm2 TCA), yield per tree (Y, kg fruit/tree) and days between full bloom and harvest (BHP, days). CD and average FW were related to the rest of the variables through the use of multiple regression models. The models which provided the best fit were CD = SLT - TCA/ha and FW = SLT + BHP - CD. These models were significant, consistent, and appropriate for all three years. The models' predictive ability was evaluated for 32 different plots in 2001 and 2002. Statistical analysis showed the models to be valid for the forecast of orchards' potential yield efficiency, so that they represent a useful tool for early crop prediction and evaluation of losses due to late frosts.

Free access

D.M. Glenn and W.V. Welker

Planting sod beneath peach trees (Prunus persica) to control excessive vegetative growth was evaluated from 1987 to 1993 in three field studies. Peach trees were established and maintained in 2.5-m-wide vegetation-free strips for 3 years, and then sod was planted beneath the trees and maintained for 5 to 7 years. Reducing the vegetation-free area beneath established peach trees to a 30- or 60-cm-wide herbicide strip with three grass species (Festuca arundinacae, Festuca rubra, Poa trivialis), reduced total pruning weight/tree in 5 of 16 study-years and weight of canopy suckers in 6 of 7 study-years, while increasing light penetration into the canopy. Fruit yield was reduced by planting sod beneath peach trees in 5 of 18 study-years; however, yield efficiency of total fruit and large fruit (kg yield/cm2 trunk area) were not reduced in one study and in only 1 year in the other two studies. Planting sod beneath peach trees increased available soil water content in all years, and yield efficiency based on evapotranspiration (kg yield/cm soil water use plus precipitation) was the same or greater for trees with sod compared to the 2.5-m-wide herbicide strip. Planting sod beneath peach trees has the potential to increase light penetration into the canopy and may be appropriate for high-density peach production systems where small, efficient trees are needed.

Free access

D.M. Glenn, W.V. Welker, and George M. Greene

Mature peach trees were grown in six different-sized vegetation-free areas (VFAs) (0.36 to 13 m2) with and without stage 3 drip irrigation for 6 years. As VFA size increased, so did the trunk cross-sectional area, canopy diameter, total yield/tree, large fruit yield/tree, and pruning weight/tree. The yield efficiency of total fruit and large fruit initially increased with the increasing size of VFAs and then remained stable over the range of VFAs. Applying supplemental irrigation increased yield of large fruit and leaf N percentage in all VFAs. Cold hardiness was not affected by VFA size or irrigation treatment. The smaller VFAs resulted in smaller, equally efficient trees. Sod management was an effective, low-cost approach to controlling peach tree size, and, when combined with irrigated, high-density production, potentially increased productivity.

Free access

Carlos Miranda Jiménez and J. Bernardo Royo Díaz

Spring frosts are usual in many of Spain's fruit-growing areas, so it is common to insure crops against frost damage. After a frost, crop loss must be evaluated, by comparing what crop is left with the amount that would have been obtained under normal conditions. Potential crop must be evaluated quickly through the use of measurements obtainable at the beginning of the tree's growth cycle. During 1996 and 1997 and in 95 commercial plots of `Blanquilla' and `Conference' pear (Pyrus communis L.), the following measurements were obtained: trunk cross-sectional area (TCA, cm2), space allocated per tree (ST, m2), trunk cross-sectional area per hectare (TCA/ha), flower density (FD, number of flower buds/cm2 TCA), flower density per land area (FA, number of flower buds/m2 land area), cluster set (CS, number of fruit clusters/number of flower clusters, %), crop density (CD, number of fruit/cm2 TCA), fruit clusters per trunk cross-sectional area (FCT, number of fruit clusters/cm2 TCA), fruit clusters per land area (FCA, number of fruit clusters/m2 land area), fruit number per cluster (FNC), average fruit weight (FW, g), average yield per fruit cluster (CY, g), yield efficiency (YE, fruit g·cm-2 TCA), and tree yield (Y, fruit kg/tree). CS and average CY were related to the rest of the variables through the use of multiple regression models. The models that provided the best fit were CS = TCA/ha - FA and CY = -FA - FCT. These models were significant, consistent, and appropriate for both years. Predicted yield per land area was obtained by multiplying FA × CS × CY. The models' predictive ability was evaluated for 46 different plots in 2001 and 2002. Statistical analysis showed the models to be valid for the forecast of orchards' potential yield efficiency, so that they represent a useful tool for early crop prediction and evaluation of losses due to late frosts.

Free access

Richard E.C. Layne

Performance of `Redhaven' peach [Prunus persica (L.) Batsch.] propagated on nine experimental Prunus rootstock was evaluated over 8 years beginning in 1984, in a randomized complete-block experiment with 10 replications on a Brookston clay loam soil type near Harrow, Ont. This experiment was part of an interregional NC-140 peach rootstock experiment. Significant rootstock-induced effects were noted for increase in trunk cross-sectional area, cumulative tree height and spread, cumulative number of root suckers, yield, average fruit weight, yield efficiency, winter injury, cold hardiness, and tree survival. None of the clonally propagated rootstock gave satisfactory overall performance. All trees on GF655-2, 80% on GF677, 60% Self-rooted, and 50% on GF1869 were dead by the eighth year. In addition, suckering was a major problem on GF1869 and a moderate problem on GF655-2. `Citation' induced the most scion dwarfing but had the lowest yields and low yield efficiency. When yield, yield efficiency, fruit size, and tree mortality were considered together, the four peach seedling rootstock performed better than the other Prunus rootstocks and were ranked as follows: Siberian C, Halford, Bailey, and Lovell. Of these, the first three could be recommended with the most confidence to commercial growers who grow peaches on fine-textured soils in northern regions.

Free access

Yahya K. Al-Hinai and Teryl R. Roper

The effect of rootstock on apple size is not clear due to inconsistent results of published studies. This study was conducted over 3 years at the Peninsular Agricultural Research Station near Sturgeon Bay, WI on 6-year-old `Gala' apple trees (Malus domestica Borkh) grafted on Malling 26 (M.26), Ottawa 3, M.9 Pajam 1, and Vineland (V)-605 rootstocks. Fruit diameter was measured weekly. Fruit weight and volume were estimated by a quadratic regression of weekly measurements. Fruit weight was positively correlated with fruit volume. Rootstock had no effect on fruit growth and final size even with the removal of crop load effects. Crop load was a highly significant covariate for fruit size, but canopy light interception and seed count were not. Trees on M.26 EMLA had slightly higher yield in 2000 but rootstock did not affect yield efficiency any year. Rootstock had no influence on fruit quality attributes during 2001; however, in 2002, fruit obtained from trees on Pajam-1 tended to be less firm. Generally, apple fruit size was influenced by crop load and other factors, but not by rootstock.

Free access

Humberto Núñez-Moreno, James L. Walworth, and Andrew P. Pond

that do not separate from the shell at maturity; the shuck remains stuck to the shell after harvest and cannot be separated completely. Yield efficiency was calculated as yield/cm 2 of TCSA. Kernel percent was determined by cracking 10 nuts from each