Search Results

You are looking at 21 - 30 of 89 items for :

  • "municipal solid waste" x
  • All content x
Clear All
Free access

Francesco Montemurro, Angelo Fiore, Gabriele Campanelli, Fabio Tittarelli, Luigi Ledda, and Stefano Canali

( Montemurro et al., 2010a ). Several studies have shown promising yield results from the application of compost, municipal solid waste ( Montemurro et al., 2005a , 2007 ), and anaerobic digestates ( Montemurro et al., 2010b ) for different crop species

Full access

Monica Ozores-Hampton

production, p. 165–175. In: V. Russo (ed.). Peppers: Botany, production and uses. CABI, Wallingford, UK Ozores-Hampton, M.P. Obreza, T.A. Hochmuth, G. 1998 Composted municipal solid waste use on Florida vegetable crops HortTechnology 8 10 17 Ozores-Hampton, M

Full access

Monica Ozores-Hampton and Deron R. A. Peach

Land application and landfilling are the most common destination for biosolids in the United States. When properly treated and managed in accordance with the existing state and federal regulations and standards, biosolids are safe for the environment and human health. Application of biosolids in vegetable production as an organic amendment to soils can increase plant growth and produce comparable crop yields with less inorganic nutrients than a standard program of commercial synthetic fertilizers. No application rate of treated biosolids alone will produce crop yields equivalent to commercial fertilizers. Biosolids may be used in conjunction with fertilizer thus lessening the application rate required. The major obstacles to public acceptance are issues concerning water pollution, risk of human disease, and odors. Additionally, heavy metals are an issue of bias with public perception. To ensure safe use of biosolids to a vegetable production systems the agronomic rate (nutrient requirement of the vegetable crop grown) should be calculated before application for the specific crop.

Full access

Monica Ozores-Hampton

Free access

George E. Fitzpatrick and Stephen D. Verkade

Three compost products made from urban waste materials, municipal solid waste (MSW), yard trash (YT), and a co-compost made from 1 part sewage sludge and 3 parts yard trash (S-YT), were used as growing media for production of dwarf oleander (Nerium oleander L.) in 25 cm. diameter containers. In one test the composts were used as stand-alone growing media and in a second test they were blended with pine bark (PB) and sand (S) in 2 ratios: 4 compost: 5 PB: 1 S and 1 compost: 1 PB: 1 S. The S-YT co-compost produced plants with the highest biomass in both tests. Reduced growth of dwarf oleander in each test was associated with the degree to which the media compacted during the 5.5 month production period. The MSW compost compacted an average 8.5 cm. per container when used as a stand-alone medium, while the S-YT mixes compacted much less, typically < 4.0 cm.

Free access

Richard C. Beeson Jr.

Municipal Solid Waste (MSW) compost was evaluated as a component of landscape ornamental container media to reduce irrigation requirements and identify beneficial uses of the material. MSW compost was blended at 10 to 40% by volume with pine bank and coarse sand. Three landscape ornamentals were produced to marketable 10 liter-size plants in each medium during an 18-month production period. Twenty percent MSW compost produced similar shoot and root growth to the “standard” medium consisting of 20% Florida sledge peat. Thirty or 40% MSW compost inhibited root growth to the lower depths of a container during the rainy summer months. This inhibition was no longer evident after growth during the dry late fall to early spring months. Root growth inhibition was due to decreased aeration rather than phytotoxic leachate. Up to 20% MSW compost can be used for container media in wet climates whereas 40% would produce high quality plants under dry climates.

Free access

Chantal J. Beauchamp, Yves Desjardins, Serge Yelle, and André Gosselin

Canadian environmental policies are aimed at reducing by 50%. the quantities of refuses intended for landfill by year 2000. In this perspective, landspreading and composting biosolids have been investigated as solutions. Paper sludges, wood wastes, and municipal solid wastes (MSW) are important components of landfill biosolids, but they are attractive by-products for agricultural use. Research projects were initiated to characterize the paper sludges produced by Daishowa Co. in Quebec City, wood wastes produced by Hydro-Quebec, and MSW composts produced from waste treatment at RITDM (Chertsey) and Conporec (Sorel). De-inked paper sludge and wood wastes have been landspreaded for growing potato and landscaping, whereas composted paper sludges have been evaluated as part of potting media for growing greenhouse plants and landspreaded for turfgrass production. The chemical and biological characteristics of these biosolids were investigated for their fertilization potential and their effect on plant growth.

Free access

Kimberlv A. Klock and George Fitzpatrick

Three compost products [biosolids (SYT), refuse derived fuel residues (RYT), and municipal solid waste (MSW)] were compared to a commercial bedding plant medium of 60% Sphagnum peat: 25% shredded bark: 15% aerolite to support Impatiens wallerana `Accent Red' growth. The treatments consisted of 100% compost as a stand alone medium plus blends in which compost was combined with control medium components at 60% compost or 30% compost. Shoot dry mass of plants grown in 100% SYT and RYT was greater than shoot dry mass of Impatiens plants grown in 100% MSW. Plants grown in SYT showed an increase in shoot dry mass from 1.29 to 1.64 g as the percentage of compost in the mix increased from 0% to 100%, while plants grown in MSW showed a linear decrease in. shoot dry mass from 1.29 to 0.18 g. Shoot dry mass of plants grown in RYT did not differ significantly from 0% to 100% compost in the media.

Free access

C. Chong, J. Yang, B. E. Holbein, R. P. Voroney, H. Zhou, and H.-W. Liu

Cuttings of sage (Salviaofficinalis `Tricolor'), currant (Ribesaureum), euonymus (Euonymus fortunei var. vegetus), and weigela (Weigela florida `Nana Variegata') were rooted under greenhouse conditions (40% shade) and mist in aerated hydroponic solutions consisting of deionized water, or mixtures of deionized water and nutrients with various levels of electrical conductivity (EC, 0.0625, 0.125, 0.25, and 0.5 dS·m-1) from each of three sources: compost tea from municipal solid waste; wastewater from anaerobic digestion of municipal solid waste; and Hoagland's (control) nutrient solution. Despite differences in species response, rooting tended to be similar with the three nutrient sources. Euonymus rooting percentage increased linearly with increasing EC and was similar with all three nutrient sources (common regression curve, 61% rooting at 0.5 dS·m-1), as did root length (1.4 cm at 0.5 dS·m-1), but root number was unresponsive. Currant rooting percent increased curvilinearly and similarly with nutrient sources (87% calculated maximum rooting at 0.25 dS·m-1), but root number and length were unresponsive. Sage rooting percentage and root number also increased curvilinearly and similarly with nutrient sources (common regression curve, 100% rooting at 0.34 dS·m-1, and 4.1 roots at 0.38 dS·m-1, respectively), as did also root length with the compost tea and Hoagland's (common curve for these two nutrient sources, 11.0 cm at 0.30 dS·m-1), but was unresponsive to wastewater. Weigela was unresponsive to EC or nutrient sources (mean percentage of rooting, 73; root number, 6.5; and root length, 1.9 cm).

Free access

Catherine S.M. Ku, John C. Bouwkamp, and Frank R. Gouin

Treatment combinations of four cultivars, 26 mixes, and three fertigation treatments were evaluated in a completely randomized design. Poinsettia cultivars included `V-14 Glory', `Red Sails', `Lilo Pink', and `Annette Hegg'. The 26 mixes were 25%, 33%, and 50% of eight compost sources blended with 1 peat: 1 perlite (v/v), and Sunshine mix and Pro-Gro were the control. The eight compost sources were yard waste, lime and polymer dewatered biosolid, municipal solid waste (MSW), co-composted MSW 1 and 2, crab waste, and poultry litter. Fertigation treatment was began on first, second, or third week after potting. Fertigation solution was 250 mg/L N from 21N–2.2P–15.8K. The controls produced premium quality plants with 38 cm in canopy diameter, 11 total number of branches, and 28 cm in shoot height. Poultry litter, yard waste, polymer dewatered biosolid, crab waste, and MSW produced good quality plants with canopy diameter ranging from 30 to 35 cm. The canopy diameter with 25% compost treatments were 6% to 20% greater than those with 50% compost treatments. Total number of branches, shoot height, canopy diameter, and plant grade with first week fertigation were only 3% greater than those with fertigation delayed 1 or 2 weeks.