Search Results

You are looking at 11 - 20 of 924 items for :

  • stomatal conductance x
  • All content x
Clear All
Free access

F. Liu and H. Stützel

This study was designed to quantify the responses of leaf expansion, stomatal conductance, and transpiration of four genotypes of vegetable amaranth [Amaranthus tricolor L. (Hin Choi), A. tricolor L. (Co. 2), A. blitum L. (WS80-192), and A. cruentus L. (RRC 1027)] to soil drying. Two greenhouse experiments were conducted during 1999 and 2000. Soil water status was expressed as the fraction of transpirable soil water (FTSW). Leaf expansion rates, stomatal conductances, and transpiration rates of the stressed plants were determined relative to those of nonstressed plants, and expressed as relative leaf expansion (RLE), relative stomatal conductance (RSC), and relative transpiration (RT), respectively. The rate of soil water extraction differed among genotypes, with RRC 1027 depleting soil water fastest and Hin Choi slowest. Whereas in 1999 all genotypes were equally efficient in soil water use, RRC 1027 extracted a greater volume of transpirable soil water than the other genotypes in 2000. The responses of RLE, RSC, and RT to FTSW were well described by linear-plateau models which allowed calculation of soil-water thresholds for leaf expansion (CL), stomatal conductance (CS), and transpiration (CT). Values for CL were higher than for CS and CT. CL was similar for the four genotypes in each year, whereas, CS and CT differed among genotypes. CS and CT was lowest for Hin Choi and highest for WS80-192. Differences of CL, CS, and CT between the two experiments might have been due to the different soils used in the experiments and the different evaporative demands during the drought cycles. Under drought stress, the reduction of transpiration of vegetable amaranth was due mainly to reduction of stomatal conductance, not to reduction of leaf expansion. The relative reduction of dry weight caused by drought stress was positively correlated with CS or CT across the four genotypes. Variation in CS and CT among amaranth genotypes revealed different responses to drought stress, which could make them suitable for different drought situations.

Free access

Jason D. McAfee and Curt R. Rom

Pesticides and alternative fruit thinners are needed for certified organic fruit growers. Transient reductions in photosynthesis (Pn) have proven an effective technique for fruit thinning. Pesticides can be detrimental to plant growth by Pn reduction. A two-part study was developed to measure plant response to foliar applications of sulfur compounds. In study 1, 2% concentrations of various sulfur compounds were observed for potential physiological or pesticidal effects. Foliar treatments were applied to vegetative apple trees grown under controlled environment conditions to study photosynthetic effects. No treatments significantly reduced CO2 assimilation (A) and stomatal conductance (gs). Copper sulfate, ammonium sulfate, and potassium sulfate significantly reduced evapotranspiration (Et) 7 days after treatment. No significance was observed for plant growth. In study 2, a 2% potassium sulfate concentration significantly reduced A 22 days after treatment; however, no differences were observed for Et and gs. Differences in plant growth were not significantly different among treatments.

Free access

A. Richard Renquist, Horst W. Caspari, M. Hossein Behboudian, and David J. Chalmers

Stomatal conductance (g s) of `Hosui' Asian pear (Pyrus serotina Rehder) trees growing in lysimeters was characterized for trees in well-watered soil and after brief water deficit. The measures of water status used to interpret g s data were soil-water content, leaf water potential (ψl), and instantaneous water use (trunk sap flow by the compensation heat-pulse technique). The diurnal course and range of g s values of well-irrigated Asian pear trees were similar to those reported for other tree fruit crops. Soil moisture at the end of a midsummer deficit period was 60% of lysimeter pot capacity, and diurnal ψl reflected this deficit predawn and in the late afternoon compared to well-irrigated trees. The g s was sensitive to deficit irrigation during more of the day than ψl, with g s values <3 mm·s-1 for most of the day; these were less than half the conductances of well-irrigated trees. The reduction of g s in response to a given soil-water deficit was not as great on days with lower evaporative demand. After a water deficit, g s recovered to predeficit values only gradually over 2 to 3 days. The low g s of trees in dry soil was the apparent cause of reduced transpiration, measured by trunk sap flow, and reduced responsiveness of sap flow to fluctuations in net radiation.

Free access

J.D. Mcafee and C.R. Rom

Alternative fruit thinners and pesticides are needed for certified organic fruit growers. A transient reduction in photosynthesis has proven to be an effective technique used for fruit thinning. Conversely, pesticides, which reduce Pn may be detrimental to plant growth. This study was developed to measure plant response to foliar applications of various organic acids as potential horticultural chemicals Treatments were applied to vegetative apple trees under controlled environmental conditions to study photosynthetic effects. CO2 assimilation significantly decreased temporarily 3 days after treatment with citric acid. Decreased trends of evapotranspiration were observed for all treatments 1 day after foliar application; however, not significant. Salicylic acid significantly decreased stomatal conductance 1 and 15 days after treatment. Average leaf area was not significantly affected but oxalic acid increased plant stem growth while acetic acid application reduced growth. This model system for screening new and alternative compounds will be a basis to study agents that may have potential to be used as certified pesticides or fruit thinning agents.

Free access

N.C. Yorio, G.W. Stutte, D.S. DeVilliers, R.M. Wheeler, and R.L. Langhans

Bean (Phaseolus vulgaris L.) cv. Etna, a dry bean variety, and cv. Hystyle, a snap bean variety, were grown at 400 and 1200 μmol·m-2·s-1 CO2 to determine the effects of CO2 enrichment on plant growth and stomatal conductance. Plants were grown in controlled environment chambers for 70 days at each CO2 level using nutrient film technique hydroponics. An 18-h light/6-h dark photoperiod was maintained for each test, with a corresponding thermoperiod of 28 °C/24 °C and constant 65% RH. Diurnal stomatal conductance measurements were made with a steady-state porometer at 28 days after planting (DAP) and 49 DAP. As expected, plant growth and yield was consistently increased for each cultivar when plants were grown at 1200 μmol·m-2·s-1 CO2 compared to 400 μmol·m-2·s-1 CO2. Stomatal conductance measured during the light period showed an expected decrease for each cultivar when grown at 1200 μmol·m-2·s-1 CO2 compared to 400 μmol·m-2·s-1 CO2. However, during the dark period, stomatal conductance was higher for each cultivar grown at 1200 μmol·m-2·s-1 CO2. These results suggest a stomatal opening effect in the dark when plants are exposed to enriched levels of CO2. Tests are underway to investigate the effects of CO2 levels greater than 1200 μmol·m-2·s-1 on the growth and stomatal conductance of bean.

Free access

James A. Zwack, William R. Graves, and Alden M. Townsend

We compared two putative Freeman maples [`Jeffersred', (Autumn Blaze ®) and `Indian Summer'] and five red maples [`Franksred' (Red Sunset ®), `Autumn Flame', `PNI 0268' (October Glory®), `Fairview Flame', and unnamed selection 59904] for effects of flooding on stomatal conductance. A method for quantifying changes in leaf color that occurred on flooded plants also was developed. Potted plants grown from rooted cuttings in a greenhouse were subjected to 75 days of root-zone inundation (flood treatment) or were irrigated frequently (control treatment). Across genotypes, stomatal conductance of flooded plants initially increased by about 20% and then fell to and was sustained below 50 mmol·s–1·m–2. Stomatal conductance of flooded plants of `Indian Summer' decreased to 20 mmo·s–1·m–2 after 8 days of inundation, and two of three flooded `Indian Summer' plants died during treatment. Other genotypes required at least twice this time to display a similar reduction in stomatal conductance, indicating `Indian Summer' may be particularly flood sensitive. Intensities of red, green, and blue color at a consistent interveinal position were analyzed with Visilog software by using scanned leaf images of the youngest fully expanded leaf of each plant in both treatments. A genotype × irrigation interaction existed for the ratio of green to red intensity. This method provided numerical data that corresponded well to differences among genotypes we observed visually. For example, while flooding did not alter the color of `Autumn Flame' leaves, the ratio of green to red was three times greater for controls of Autumn Blaze® than for the flooded plants of this cultivar.

Free access

Sanliang Gu, Leslie H. Fuchigami, Lailiang Cheng, Sung H. Guak, and Charles C.H. Shin

Seedling plugs of `Early Girl' tomato plants (Lycopersicon esculentum Mill.) were potted in peatmoss and perlite (60:40% by volume) medium, fertilized with 8, 16, 24, or 32 g NutriCote Total controlled-release fertilizer (type 100, 13N–5.67P–10.79K plus micronutrients) per pot (2.81 l), and treated with 0%, 2.5%, 5%, or 7.5% antitranspirant GLK-8924 solution, at the four true-leaf stage. Plants were tipped at the second inflorescence and laterals were removed upon emergence. Leaf stomatal conductance, transpiration rate, and growth were depressed by GLK-8924. In contrast, higher fertilization rate increased plant growth but leaf stomatal conductance and transpiration rate were not affected until 3 weeks after GLK-8924 treatment. With 24 g NutriCote per pot, lamina N concentration in GLK-8924 treated plants was 12.5-fold of that in untreated plants, regardless of GLK-8924 concentration. Lamina P, K, Fe, and Cu were greater while S, Ca, Mg, Mn, B, and Zn were not affected by GLK-8924. The reduced growth by GLK-8924 may be due to the reduced stomatal conductance while the increased growth by high fertilization may be due to influences on plant nutritional status.

Free access

Peter R. Hicklenton, Julia Y. Reekie, Robert J. Gordon, and David C. Percival

Seasonal patterns of CO2 assimilation (ACO2), leaf water potential (ψ1) and stomatal conductance (g1) were studied in three clones (`Augusta', `Brunswick', and `Chignecto') of lowbush blueberry (Vaccinium angustifolium Ait.) over two growing seasons. Plants were managed in a 2-year cycle of fruiting (year 1) and burn-prune (year 2). In the fruiting year, ACO2 was lowest in mid-June and early September. Rates peaked between 10 and 31 July and declined after fruit removal in late August. Compared with the fruiting year, ACO2 in the prune year was between 50% and 130% higher in the early season, and between 80% and 300% higher in mid-September. In both years, however, mid-season maximum ACO2 for each clone was between 9 and 10 μmol·m–2·s–1CO2. Assimilation of CO2 increased with increasing photosynthetic photon flux (PPF) to between 500 and 600 μmol·s–1·m–2 in `Augusta' and `Brunswick', and to between 700 and 800 μmol·s–1·m–2 in `Chignecto'. Midday ψ1 was generally lower in the prune year than in the fruiting year, reflecting year-to-year differences in soil water content. Stomatal conductance (g1), however, was generally higher in the prune year than in the fruiting year over similar vapor pressure deficit (VPD) ranges, especially in June and September when prune year g1 was often twice that observed in the fruiting year. In the fruiting year, g1 declined through the day in response to increasing VPD in June, but was quite constant in mid-season. It tended to be higher in `Augusta' than in the other two clones. Stomatal closure imposes limitations on ACO2 in lowbush blueberries, but not all seasonal change in C-assimilative capacity can be explained by changes in g1.

Free access

Sung H. Guak, Lailiang Cheng, and L.H. Fuchigami

Potted apple trees (Malus domestica L. `Gala') were drenched with either water or an antitranspirant (N-2001). After treatment, no additional water was applied to the plants. Abscisic acid (ABA) content of immature and mature leaves was determined by radioimmunoassay after 0, 1, 3, and 5 h and 1, 2, 4, 7, 8, and 9 days after treatment. ABA content of mature and immature leaves of antitranspirant-treated plants peaked 1 and 4 days after treatment, respectively, and remained constant thereafter. In contrast, with increasing water stress, the ABA content of mature and immature leaves of control plants without antitranspirant peaked at 7 and 8 days, respectively. The overall level of ABA in mature leaves of both treatment groups was significantly greater than in immature leaves. The water saturation deficit increased, water and turgor potentials of leaves decreased, and stomatal conductance decreased in response to antitranspirant application. The changes in water relations parameters and stomatal conductance were highly correlated with changes in leaf ABA content.

Free access

William L. Bauerle* and Joe E. Toler

A multiplicative model of stomatal conductance was developed and tested in two functionally distinct ecotypes of Acer rubrum L. (red maple). The model overcomes the main limitation of the commonly used Ball-Berry model by accounting for stomatal behavior under soil drying conditions. It combined the Ball-Berry model with an integrated expression of abscisic acid-based control mechanisms (gfac). The factor gfac = exp(-β[ABA]L) incorporated the stomatal response to abscisic acid (ABA) concentration in the bulk leaf tissue [ABA]L into the Ball-Berry model by down-regulating the slope and coupled physiological changes at the leaf level with those of the root. The stomatal conductance (gs) down regulation is pertinent in situations where soil drying may modify the delivery of chemical signals to leaf stomates. Model testing results indicated that the multiplicative model was capable of predicting stomatal conductance under wide ranges of soil and atmospheric conditions in a woody perennial. Concordance correlation coefficients (rc) were high (between 0.59 and 0.94) for the tested ecotypes under three different environmental conditions (aerial, distal, and minimal stress). The study supported the use of the gfac factor as a gas exchange function that controlled water stress effects on gs and aided in the prediction of gs responses.