Search Results

You are looking at 11 - 20 of 39 items for :

  • All content x
Clear All
Free access

Siriphun Sriyook, Somboon Siriatiwat, and Jingtair Siriphanich

Immature and mature durian (Durio zibethinus Murr.) fruit dehiscence was studied. Fruit were stored at 27C and 65% or 95% relative humidity, with or without 24-hour exposure to 100 ppm ethylene. Low relative humidity and ethylene increased fruit dehiscence. Spraying fruit with 100 ppm GA3 delayed dehiscence but allowed pulp ripening to continue. The plant-growth regulators IBA; 2,4-D; 2,4,5-T; BAP; daminozide; and mepiquat chloride had no consistent effects on fruit dehiscence. Various coating materials delayed dehiscence and ripening; a sucrose fatty acid ester at 1% concentration gave the best result. All coating materials reduced weight loss 7% to 14% below that of the control fruit. Fruit coated with the sucrose fatty acid ester and 100% apple wax had higher internal CO2 levels than fruit coated with any other coating. Ethylene is more important in durian fruit dehiscence than weight loss. Chemical names used: 3-indolebutyric acid (IBA); 2,4-dichlorophenoxyacetic acid (2,4-D); 2,4,5-trichlorophenoxyacetic acid (2,4,5-T); 6-benzylaminopurine (BAP); succinic acid-2,2-dimethyl hydrazide (daminozide); 1,1-dimethyl-piperidinium chloride (mepiquat chloride); gibberellic acid (GA3).

Free access

James R. Schupp and Duane W. Greene

To compare the effects of growth regulators on preharvest fruit drop and fruit maturity, aminoethoxyvinylglycine (AVG) was applied to `McIntosh' apple trees at 75, 150, or 225 mg·L-1, at 8, 4, or 2 weeks before harvest (WBH). These treatments were compared to NAA, daminozide, and to an untreated control. All AVG treatments and timings except 75 mg·L-1 applied 8 WBH delayed preharvest drop and fruit maturity. AVG applied at 225 mg·L-1was more effective in delaying drop and development of maturity than other rates when applied 8 or 2 WBH, but at 4 WBH, 150 mg·L-1 gave equivalent results to 225 mg·L-1. AVG at 150 mg·L-1 was superior to NAA or daminozide as a stop-drop agent. No concentration, or time of application of AVG influenced fruit size at harvest. AVG reduced internal ethylene concentration (IEC) in `McIntosh' apples linearly with increasing AVG concentration. There was a linear relationship between time of AVG application (8, 4, or 2 WBH) and IEC in the fruit after harvest, and the time required for harvested fruit to enter the ethylene climacteric. Development of red color was delayed by AVG. This was attributed to a delay in ripening as determined by a slower increase in IEC and starch hydrolysis. In general, earlier application of AVG resulted in reduced effectiveness of lowering IEC following harvest. Chemical names used: aminoethoxyvinylglycine (AVG), naphthaleneacetic acid (NAA), succinic acid-2,2-dimethylhydrazide (daminozide).

Free access

Stephen P. Lee, Paul M. Chen, Tony H.H. Chen, Diane M. Varga, and Eugene A. Mielke

A proportion of `d'Anjou' pear fruit (Pyrus communis L.) developed a disorder, “black speck” or “skin speckling”, after prolonged controlled atmosphere (CA) storage (1% O2, - 0.5 C). A comparative study of biochemical components revealed that there was no significant difference in succinic, citric, fumaric, and pyruvic acids between the speckled' and normal skin tissues. The content of malic acid in the affected tissue was almost three times lower than that in the normal tissue. The specific activity of NADP-malic enzyme (EC in the affected tissue was also lower, but the total activities were similar. The affected tissue contained higher percentages of dry matter and soluble proteins than the normal tissue. Two-dimensional gel electrophoresis of proteins showed that two groups of novel polypeptides appeared only in the affected skin tissue. This study indicated that a certain proportion of `d'Anjou' pear fruit might have been exposed to unfavorable preharvest environmental stresses, and, therefore, could no longer tolerate the subsequent semi-anaerobic and chilling stresses during prolonged CA storage.

Free access

Chad E. Finn, James J. Luby, Carl J. Rosen, and Peter D. Ascher

Progenies from crosses among eight highbush (Vaccinium corymbosum L.), lowbush (V. angustifolium Ait.), and V. corymbosum/V. angustifolium hybrid-derivative parents were evaluated in vitro at low (5.0) and high (6.0) pH for vitality, height, and dry weight. Succinic acid and 2[N- morpholino]ethanesulfonic acid (Mes) effectively maintained pH in the medium and rhizosphere. The pH regime did not affect percent radicle emergence from seed or survival; however, percent seed germination was slightly lower at high pH. The parental general combining ability (GCA), reciprocal and maternal, but not the specific combining ability (SCA) variance components were significant for plant vitality, height, and dry weight. The GCA variance components were six to 26 times larger than the SCA variance components for the plant growth traits. Variation due to pH regime was significant for vitality and dry weight but not for plant height. The progenies of parents with high percent lowbush ancestry were taller at both pH levels than those with less such ancestry. Little variation was apparent for higher pH tolerance as measured by dry weight; however, the GCA effects suggested that the progenies of some parents performed better than others at high pH. Vaccinium angustifolium parents differed in the extent to which tolerance to high pH was transmitted. In vitro screening in concert with a traditional breeding program should be effective in improving blueberry tolerance to higher pH.

Free access

W. Kalt and J. McDonald

Sugars, pigments, and organic and phenolic acids were examined in three name clones of lowbush blueberries (V. angustifolium Aiton) during two seasons. Between the two seasons, glucose and fructose content was not different, but anthocyanin content differed by 40%. Also, titratable acidity differed by 40%, and total acid content (as measured by HPLC) by 60%. Differences in total acid content between the two seasons could be attributed to changes in some, but not all, acids. Acid content of berries of different maturities suggested that some, but not all, acids decreased as fruit ripened. Although the acid profile was different in the 2 years of the study, overall the lowbush blueberry profile was distinct from that recently reported for highbush and rabbiteye blueberries [Ehlenfeldt et al., HortScience 29(4):321–323]. Succinic acid was absent in lowbush fruit, and there was a higher level of quinic acid than found in highbush or rabbiteye blueberries. Citric acid was present in lowbush fruit at a level intermediate between the other Vaccinium species.

Free access

J. Pablo Fernández-Trujillo, Jacqueline F. Nock, and Christopher B. Watkins

`Cortland' and `Law Rome' apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] were either nontreated or treated with the inhibitor of superficial scald development, DPA, and exposed to air or CO2 (40 or 45 kPa) in air at 2 °C for up to 12 days. Fruit exposed to air or 45 kPa CO2 were sampled during treatment, and peel and flesh samples taken for fermentation product and organic acid analyses. After treatment, fruit were air stored for up to 6 months at 0.5 °C for evaluation of disorder incidence. `Cortland' apples were most susceptible to external CO2 injury and `Law Rome' to internal CO2 injury. DPA treatment markedly reduced incidence of both external and internal injury. Fermentation products increased in peel and flesh of both cultivars with increasing exposure to CO2, but the extent of the increase was cultivar dependant. Acetaldehyde concentrations were about 10 times higher in peel and flesh of `Law Rome' than that of `Cortland' apples. Ethanol concentrations in the flesh were similar in both cultivars, but were about twice as high in `Cortland' than in `Law Rome' peels. Neither acetaldehyde nor ethanol concentrations were affected consistently by DPA treatment. Succinate concentrations, often regarded as the compound responsible for CO2 injury, increased with CO2 treatment, but were not affected by DPA application. Citramalate concentrations were reduced by CO2 treatment in `Law Rome' peel, but other acids were not consistently affected by CO2. Results indicate that acetaldehyde, ethanol or succinic acid accumulation are not directly responsible for CO2 injury in apples. Chemical name used: diphenylamine (DPA).

Free access

Bruce P. Bordelon and J.N. Moore

Plant growth regulators (PGRs) [antigibberellins (mepiquat chloride, uniconazole, ancymidol, daminozide, chlormequat, ethephon, methazole), cytokinins (BAP, kinetin, BTP, 2iP), and ABA] were evaluated at various concentrations and timings for promotion of seed trace development and germination of four stenospermic grape cultivars (Vitis spp.): `Venus', `Mars', `Reliance', and `Saturn'. Data include seed trace number per berry, percent of seed traces with endosperm (sinkers), sinker fresh weight, and percent seed trace germination. Several PGRs effectively increased seed number and percent sinkers over control treatments. PGRs had little effect on seed fresh weight and percent germination. PGRs promoted greater increases in percent sinkers than seed number on all cultivars. The number of viable seeds per sample (seed number × percent sinkers) was increased over controls by up to 802% on `Reliance', 239% on `Saturn', 154% on `Mars', and 153% on `Venus'. A moderate percentage of viable seeds from treatments and controls of `Mars', `Venus', and `Saturn' germinated and established normal seedlings. The very small seed traces of `Reliance' did not germinate from either controls or treatments. The results indicate that PGRs can stimulate seed trace formation in some stenospermic cultivars and therefore may be useful tools in grape breeding programs. Chemical names used: abscisic acid (+/-)cis-trans isomer (ABA); a-cyclopropyl-a-(4-methoxy-phenyl)-5-pyrimidinemethanol (ancymidol); 6-benzylaminopurine (BAP); 6-benzylamino-9-(2 tetra-hydropropanyl)-9H-purine (BTP); (2-chloroethyl) trimethyl-ammonium chloride (chlormequat); succinic acid 2,2 dimethyl-hydrazide (daminozide); (2-chloroethyl) phosphonic acid (ethephon); 6-(dimethyl-allylamino) purine (2iP); 6-furfurylaminopurine (kinetin); N,N-dimethyl-piperidinium chloride (mepiquat chloride); [2-(3,4-dichlorophenyl)-4-methyl-1,2,4-oxadiazolidine-3,5-dione] (methazole); E-1-(4-chlorophenyl)-4,4-di-methyl-2-(1,2,4-triazol-1-yl)-1-pentan-3-ol (uniconazole).

Free access

Richard H. Zimmerman and George L. Steffens

Tissue-culture (TC)-propagated `Gala' and Triple Red `Delicious' apple trees grown at three planting densities were not treated (CON) or treated with plant growth regulators (PGRs) starting the third or fourth season to control tree size and maximize fruiting. `Gala' and `Delicious' trees budded on M.7a rootstock (BUD) were also included as controls. `Gala' trees were larger than `Delicious' after the first three growing seasons but `Delicious' were larger than `Gala' at the end of 9 years. BUD trees were larger than CON trees the first few seasons hut final trunk cross-sectional area (TCSA) of CON trees averaged 43% greater than BUD trees. Paclobutrazol and uniconazole treatments more readily controlled the growth of `Gala' than `Delicious' and uniconazole was more effective than paclobutrazol in controlling tree size. Daminozide + ethephon sprays (D+E-S) did not influence tree size. Tree size of both cultivars was inversely related to planting density and both triazole PGRs were more effective in controlling tree size as planting density increased. The trees had fewer flowers as planting density increased and BUD trees generally had more Bowers than CON. Triazole PGRs had little effect on the flowering pattern of `Gala' trees but tended to stimulate flowering of young `Delicious' TC trees, although the increases were not sustained. The D+E-S treatment increased flowering of `Gala' trees the last 3 years of the experiment and consistently increased flowering of `Delicious' TC trees. Fruit yields were higher for young `Gala' compared to `Delicious' trees and the final cumulative yield per tree for `Gala' was also greater. Yield per tree decreased as tree density increased and was the same for BUD and CON trees. D+E-S increased cumulative per tree yield of `Delicious' but not of `Gala'. Cumulative yields per tree for triazole-treated TC trees were the same as, or significantly lower than, CON trees. Increasing tree density did not increase yield/ha. Yield efficiency of `Gala' trees was increased by three, and of `Delicious' trees by one, of the triazole treatments, because they reduced TCSA proportionally more than they reduced per tree yield. There was less bienniality with `Gala' than `Delicious' and no difference between BUD and CON trees. Bienniality indices were higher for paclobutrazol-treated `Gala' trees compared with CON `Gala' but only uniconazole applied as a trunk paint increased the bienniality index of `Delicious' trees. Chemical names used: succinic acid-2,2-dimethyl hydrazide (daminozide), (2-chloroethyl) phosphonic acid (ethephon), (2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-01 (paclobutrazol), (E)-(l-chlorophenyl)-4,4-dimethyl-2-(I,2,4-triazol-l-yl)-1-penten-3-ol (uniconazole).

Free access

Rachel S. Leisso, Ines Hanrahan, James P. Mattheis, and David R. Rudell

, W, and B ( Supplemental Fig. 1A–C ). Malic acid levels were higher in cortex from treatments where ripening was expected to be most impeded (low temperature and high CO 2 ). Additionally, elevated succinic acid levels have been found in apple cortex

Full access

Yifei Wang, Stephanie K. Fong, Ajay P. Singh, Nicholi Vorsa, and Jennifer Johnson-Cicalese

, 2014 ; Horvat and Senter, 1985 ), blueberries also contain different organic acids, including citric, quinic, malic, and succinic acids that contribute to their unique flavor ( Ehlenfeldt et al., 1994 ). Moreover, they are also known for the rich