Search Results

You are looking at 11 - 20 of 304 items for :

  • "heat tolerance" x
  • All content x
Clear All
Free access

John M. Ruter

Temperatures producing heat damage in leaves of Ilex ×meserveae S.Y. Hu `Blue Prince' and Ilex rugosa × cornuta Lindl. & Paxt. `Mesdob' (China Boy) were evaluated using electrolyte leakage and chlorophyll fluorescence techniques. Whole leaves were exposed to temperatures from 30 to 65C for 30 minutes to determine critical midpoint heat-killing temperatures (TJ using electrolyte leakage techniques. The Tm for `Blue Prince' and `Mesdob' was 52.4 ± 0.lC and 53.8 ± 0.lC, respectively. Dark-adapted leaves were heated for 30 minutes in darkness at temperatures between 30 and 57C before chlorophyll fluorescence was measured. Initial (F0) and peak fluorescence measurements were higher at 54 and 55C for `Mesdob' than for `Blue Prince'. Cultivar had no effect on variable fluorescence (F,). Based on the Fv: Fo ratio, `Mesdob' was estimated to have a higher optimal plant growth temperature than `Blue Prince'. The physiologic data support the hypothesis that I. cornuta as a parent conferred heat tolerance to the interspecific hybrid in this study.

Free access

Yan Xu and Bingru Huang

mechanisms of plant heat tolerance. Recently, a heat-tolerant C 3 perennial grass species, Agrostis scabra , has been identified growing in geothermally heated areas in Yellowstone National Park, Wyo. ( Stout and Al-Niemi, 2002 ). It survives or even

Free access

Yali He and Bingru Huang

enzymes, stress duration, the level of temperatures, and plant species ( Almeselmani et al., 2006 ; Chaitanya et al., 2002 ; Dat et al., 1998 ; Foyer et al., 1997 ; Sairam et al., 2000 ). Plant species and cultivars with superior heat tolerance

Free access

Neil L. Heckman, Garald L. Horst, Roch E. Gaussoin, and Linda J. Young

Heat accumulation during storage of sod may reach lethal temperatures within 4 days, decreasing sod quality. Treatment with trinexapac-ethyl reduces heat accumulation during sod storage. However, heat tolerance of grasses treated with trinexapacethyl has not been documented. Our objectives were to: 1) determine the lethal temperatures for Kentucky bluegrass (Poa pratensis L.); and 2) identify the effect of a single application of trinexapac-ethyl on heat tolerance. Experimental design was a randomized complete block with three replications and a two (trinexapac-ethyl vs. control) × two (cultivars) factorial arrangement of treatments. Ten days after chemical treatment, Kentucky bluegrass sprigs were exposed to heat stress for 4 days in a temperature gradient block under low vapor pressure deficit. Treatment with trinexapac-ethyl at 0.23 kg·ha-1 reduced heat tolerance. Temperature needed to kill 50% of the population was 35.5 °C for treated vs. 36.1 °C for nontreated grass. Trinexapac-ethyl is in the same chemical family as the cyclohexanedione herbicides that interfere with lipid syntheses in grasses. This may be a reason for the slight decrease in heat tolerance. The practical value of trinexapac-ethyl treatment in reducing heat accumulation during storage of sod may be partially negated by a decrease in heat tolerance. Chemical name used: [(4-cyclopropyl-α-hydroxy-methylene)-3,5-dioxocyclohexanecarboxylic acid methyl ester] (trinexapac-ethyl).

Free access

Aref A. Abdul-Baki

Selected breeding lines and cultivars of tomatoes (Lycopersicon esculentrum Mill.) were evaluated for heat tolerance in the greenhouse (39°C day and 28°C night) and field using flowering, fruit-set, yield, fruit quality, and seed production as criteria. Under high temperature, heat tolerant lines performed better than the other two groups in all evaluation criteria except for seed production. The opposite was found under normal field conditions where heat sensitive commercial cultivars outyielded the heat tolerant lines and cultivars. Production of viable seeds under high temperature was severely reduced regardless of the heat tolerance level exhibited by the line or cultivar. Some of the heat tolerant lines could provide valuable sources of plant material for physiological studies to establish the molecular basis of heat tolerance and also could provide excellent germplasm sources for breeding heat tolerant tomato cultivars.

Free access

Kathryn R. Kleiner and John J. Frett

A greenhouse study was designed to determine the relative heat tolerance of 10 lima bean cultivars and to evaluate the effects of high temperature on lima bean yield. Cultivars were arranged in a randomized complete block with three blocks per treatment. The temperature treatments were 25C day/15C night and 35C day/25C night. Cultivars varied in their response to the higher temperature, allowing for classification into three heat response groups: intolerant, average, and tolerant. Heat-intolerant plants did not experience a significant reduction in number of pods, but number of beans and total bean weight were reduced at the higher temperature. Number of seeds per pod and average weight per bean also tended to decrease in intolerant plants at 35C. In future experiments, these data will be correlated with random amplified DNA (RAPD) markers. These markers will be evaluated for their potential for heat tolerance screening.

Free access

Thomas G. Ranney, Frank A. Blazich, and Stewart L. Warren

Temperature sensitivity of net photosynthesis (Pn) was evaluated among 4 taxa of rhododendron including Rhododendron hyperythrum, R. russatum, and plants from two populations (northern and southern provenances) of R. catawbiense. Measurements were conducted on individual leaves at temperatures ranging from 15 to 40C. Temperature optima for Pn ranged from a low of ∼21 C for R. russatum to a high of ∼27C for R. hyperythrum. At 40C, Pn rates for R. hyperythrum, R. catawbiense (northern provenance), R. catawbiense (southern provenance), and R. russatum were 7.8, 5.7, 3.5, and 0.2 μmol·m-2·s-1, respectively. R. catawbiense from the southern provenance did not appear to have greater heat tolerance than plants from the northern provenance. There was no difference in temperature sensitivity of dark respiration among the taxa. Variations in heat tolerance among species appeared to result from a combination of stomatal and nonstomatal limitations on Pn at high temperatures.

Free access

Jinyu Wang, Bo Yuan, Yi Xu, and Bingru Huang

both amino acids and proteins between different cultivars of plants contrasting in heat tolerance will enable the identification of the key metabolic processes controlling genetic variations in heat tolerance. Free amino acids are constituents of

Free access

Thomas G. Ranney, Frank A. Blazich, and Stuart L. Warren

Temperature sensitivity of net photosynthesis (PN) was evaluated among four taxa of rhododendron including Rhododendron hyperythrum Hayata, R. russatum Balf. & Forr., and plants from two populations (northern and southern provenances) of R. catawbiense Michx. Measurements were conducted on leaves at temperatures rauging from 15 to 40C. Temperature optima for PN ranged from a low of 20C for R. russatum to a high of 25C for R. hyperythrum. At 40C, PN rates for R. hyperythrum, R. catawbiense (northern provenance), R. catawbiense (southern provenance), and R. russatum were 7.8,5.7,3.5, and 0.2 μmol·m-2·s-1, respectively (LSD0.05 = 1.7). Rhododendron catawbiense from the southern provenance did not appear to have greater heat tolerance than plants from the northern provenance. Differences in dark respiration among taxa were related primarily to differences in tissue weight per unit leaf surface area. Temperature coefficients (Q5) for respiration did not vary in temperature response among taxa. Differences in heat tolerance appeared to result from a combination of stomatal and nonstomatal limitations on PN at high temperatures.

Free access

D.M. Quinn, B.K. Behe, J.L. Witt, and R.S. Roark

Our objective was to determine heat tolerance and performance of 245 summer-flowering annual plant cultivars installed 16 Mar. 1995 in beds receiving full sun located at the E.V. Smith Research Center in Shorter, Ala. (lat. 32°30′N, long. 85°40′W). No maintenance, with the exception of one midseason pruning of petunias, was performed. Catharanthus roseus L. `Blush Cooler' had the highest mean rating (4.1 of 5.0). Salvia farinacea Benth. `Victoria Blue' and Petunia ×hybrida `Fantasy Pink' both performed well with 3.5 mean ratings. `Purple Wave', a compact spreading cultivar of P. ×hybrida, had a 3.1 mean rating, but had a 5.0 rating before pruning. We do not recommend pruning `Purple Wave'. Of the 34 marigold cultivars evaluated, Tagetes erecta L. `Antigua Mixed' had the highest mean rating. Tagetes erecta `Inca Yellow' and `Perfection Gold' tied with the second highest mean rating.