Search Results

You are looking at 11 - 20 of 68 items for :

  • "auxin treatment" x
  • All content x
Clear All
Full access

Zhaohui Li, Yan Ma, Wanyuan Yin, Dekui Zang, and Xianfeng Guo

reports of cutting propagation of P. tatarinowii have been published. The present study was performed to explore stem cutting techniques for P. tatarinowii . The specific objectives were, first, to screen the appropriate exogenous auxin treatment and

Free access

Sunghee Guak, Michael Beulah, Norman E. Looney, and Leslie H. Fuchigami

Three experiments were conducted at two locations, two at Summerland, British Columbia, Canada and one at Corvallis, Ore., to evaluate synthetic auxins (MCPB-ethyl or NAA) and ethephon as blossom thinners for `Fuji' apple [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.]. These experiments also involved application of carbaryl at 1000 mg·L-1 in the postbloom period. All blossom thinners were sprayed at 85% full bloom while carbaryl was applied at 11-mm fruit diameter. Within these experiments, MCPB-ethyl at up to 20 mg·L-1 or NAA at up to 21 mg·L-1 increased whole flower cluster removal linearly with rate; however, with the Corvallis experiment MCPB-ethyl failed to result in any thinning. Neither auxin treatment consistently reduced fruit set on the remaining clusters, resulting in “clustering”. Bloom-time application of ethephon at 100 mg·L-1 with NAA further reduced crop load. Carbaryl reduced total crop load by increasing both whole cluster removal and number of sites with a single fruit. Return flowering was not improved by the auxin treatments except where there was very excessive crop reduction. Ethephon or carbaryl promoted return flowering with the carbaryl effect being more pronounced. However, this carbaryl effect was significantly countered by the bloom-time auxin whereas ethephon overcame the negative effects of the auxin treatments. The combined use of ethephon and carbaryl was effective in terms of both crop reduction and return flowering benefits. Chemical names used: 1-naphthyl N-methylcarbamate (carbaryl); 2-chloroethylphosphonic acid (ethephon); ethyl 4-(4-chloro-2-methylphenoxy) butanoate (MCPB-ethyl); and 2-(1-naphthyl) acetic acid (NAA).

Free access

Jules Janick, Anna Whipkey, S.L. Kitto, and J. Frett

Shoot proliferation of Japanese plum yew [Cephalotoxus harringtonia (Forbes) K. Koch] derived either from a seedling or from a mature clone was achieved in a medium based on Murashige and Skoog salts supplemented with vitamins and casein hydrolysate in the presence of 10% (v/v) coconut water. Rooting was unsuccessful from microcuttings proliferated on agar-based medium, but, when cultured in liquid medium on membrane rafts, detached shoots rooted under mist in greenhouse conditions with or without auxin treatments. Rooted microcuttings successfully acclimated to greenhouse conditions.

Free access

Mateja Štefančič, Franci Štampar, and Gregor Osterc

The influence of two exogenously applied auxins (IAA and IBA) on the root and shoot development of leafy cuttings was analyzed at 'GiSelA 5', the dwarfing cherry rootstock. IBA (indole-3-butyric acid) hindered the callus formation in the early period of root development and it was more successful than IAA (indole-3-acetic acid) in promoting earlier root development. IBA also influenced the stronger shoot growth and the development of acrobasal type of the rooting system, and induced higher number of roots. Those parameters are very important for the quality and survival of the new plants and they are not the consequence of the higher IAA content in the rooting zones of cuttings in the first days of root development. Both auxin treatments had no effect on the final percent of the rooted cuttings neither on the survival of cuttings, but they increased the percent of rooted cuttings without callus. The root system with callus proved less qualitative, because the cuttings with such root system developed significantly less roots per rooted cutting and their shoot length was shorter than those of the cuttings without callus at both auxin treatments. Exogenously applied auxins were not crucial for root formation, however their application resulted in higher percent of more qualitative 'GiSelA 5' leafy cuttings. IBA proved as the most efficient treatment and it additionally induced earlier root formation.

Free access

Clare Bowen-O'Connor, John Hubstenberger, Dawn Van Leeuwen, and Rolston St. Hilaire

Double-node microshoots of bigtooth maple (Acer grandidentatum Nutt.) were rooted in vitro on Driver-Kuniyuki Walnut (DKW) tissue culture media containing indole acetic acid (IAA). Microshoots represented six sources from three locations within Texas and New Mexico. Microshoots were placed in Phytatrays II™ containing DKW media with no plant growth regulator (DKW0) to reduce the high cytokinin levels used for shoot proliferation. Microshoots were induced to form roots for 15 days by placing them on DKW media containing IAA at 0.01, 1, 2.5, 5, 10, 15 or 20 μmol. Rooting frequency, the number of leaves and callus area were recorded every 30 days for 60 days. Rooting frequency increased up to 29% as IAA concentration increased (P= 0.004). However, as much as 71% of shoots for one of the three Guadalupe Mountain, Texas, sources rooted without auxin treatment after 30 days. The IAA concentration also affected the number of leaves per shoot (P= 0.0228) which averaged seven and callus area (P= <0.0001) which averaged 52 mm2. Average leaf size was 307 mm2. We conclude that IAA induces rooting in microshoots of bigtooth maple after 15 days of root induction. However, one source rooted without auxin treatment. The presence of callus does not interfere with root formation.

Free access

Veronique Declerck and Schuyler S. Korban

Leaf segments of Prunus persica L. (peach) collected from greenhouse-grown plants and from micropropagated shoots were cultured on a basal medium containing half-strength Murashige and Skoog (MS), Staba vitamins, sucrose (30 g/1) and agar (6.5 g/l); medium adjusted to pH 5.6. The influence of 6 different growth regulators at 3 concentrations (5, 10, 15 μM) were investigated using leaf explants from proliferating shoots of 'Elberta Queen' peach. With thidiazuron (TDZ), compact and multiple green calli were obtained; with benzyladenine and zeatin, lower numbers of small sized calli were obtained; with kinetin, no callus development was observed. Among auxin treatments, both Dicamba and 2,4-D resulted in friable white and yellow calli. Most of the calli produced in all treatments were formed along the cut margins of the explants. In an another experiment, leaf explants of' Bellaire' (greenhouse) and `Elberta Queen' (in vitro shoots) were used to determine the influence of a large scale concentration of TDZ (3 to 23 |iM). Explants from greenhouse and in vitro leaves resulted in higher levels of callus development at TDZ concentrations of 8-13 μM. Higher TDZ levels resulted in necrosis of leaf explants. The-influence of different carbon sources on callogenesis was investigated. We observed more green and compact calli with glucose than with sucrose and fructose at 100 mM. The influence of the glucose at 10 different concentrations (30 to 300 mM) was also investigated.

Free access

Michael Marcotrigiano and Susan P. McGlew

A two-stage micropropagation system was devised for cranberries (Vaccinium macrocarpon Ait.). Shoot-tip explants taken from four cultivars of greenhouse-grown plants were placed on media composed of Anderson's major salts, Murashige and Skoog's (MS) minor salts and organics, plus various concentrations of 2iP, IBA, and GA3. In other experiments, explant source, salt formulations for media, and rooting treatments were studied. Optimal multiplication and shoot quality occurred when nodal explants taken from greenhouse-grown or micropropagated plants were placed on medium containing 150 μm 2iP, 1.0 μm IBA, and no GA3. Histological examination revealed that the initial response of nodes to culture is axillary bud proliferation, but adventitious shoot formation occurred after 4 to 6 weeks. Cultures that contained only axillary shoots were not evident unless low levels of 2iP were used, at which point only axillary buds present on the explants were released. Proliferated shoots could be rooted ex vitro without auxin treatment. Optimal rooting occurred under high-light conditions. Plants were transplanted to the field for comparison to conventionally propagated material. Chemical names used: gibberellic acid (GA3), N-(3-methyl-2-butenyl)-1H-purin-6-amine (2iP), 1H-indole-3-butanoic acid (IBA).

Free access

Jason J. Griffin and F. Todd Lasseigne

The snowbells (Styrax L.) are a group of flowering shrubs and trees distributed throughout the warm-temperate regions of the northern hemisphere. In all, there are about 120 species, of which only Styrax japonicus Sieb. & Zucc. (Japanese snowbell) and its cultivars are currently of commercial significance. Other species may also posses desirable horticultural traits that could be valuable on their own merit, or used in plant improvement programs. Currently there is little information regarding asexual propagation of the lesser known species. The results herein show that propagation of a diverse collection of Styrax(15 taxa) is possible by stem cuttings. However, species and cultivars within a species do not respond to auxin treatment similarly. The percentage of rooting of many taxa was improved when cuttings were treated with 3000 or 8000 ppm (0.3% or 0.8%) of the potassium salt of indolebutyric acid (K-IBA). However, rooting was unaffected by K-IBA treatment in some taxa, while rooting was negatively affected by K-IBA in others. Additionally, the number of roots produced per rooted cutting were affected by K-IBA treatment. In some instances, K-IBA increased the number of roots per rooted cutting. However, in most of the taxa, root number was unaffected.

Free access

Ramon Dolcet-Sanjuan and Elisabet Claveria

Micropropagation of Pistacia vera `Mateur' was improved by adding MeJA to the multiplication and rooting media. Shoot-tip cultures established from grafted trees were maintained on a modified Murashige and Skoog medium containing 5 μm BA and 0.05 μm IBA. Adding 0.3, 1, or 3.2 μm MeJA improved shoot multiplication rates 2.5, 3.0, and 2.3, respectively. There was a significant interaction between the effects of auxin and temperature on the percentage of shoots forming roots. At 25C, the percentage of shoots forming roots was higher in the presence of NAA than IAA or IBA, whereas, at 28C, there was no difference among the auxins. Adding MeJA to the best auxin treatments-31.6 μm NAA at 25C and 31.6 μm IAA at 28C-increased the percentage of shoots forming roots and number of roots per shoot but decreased root length. More than 80% of the shoots rooted at 25C when 1 μM MeJA was added to the root induction medium, which contained 31.6 μm NAA, and the root elongation medium, without auxin. The large number of short roots induced by MeJA facilitated plantlet transfer to soil and acclimation. Chemical names used: methyl jasmonate (MeJA); N6-benzyladenine (BA), indole-3-butyric acid (IBA), α-naphthaleneacetic acid (NAA), indole3-acetic acid (IAA).

Full access

Carlos A. Lazcano, Fred T. Davies Jr., Andrés A. Estrada-Luna, Sharon A. Duray, and Victor Olalde-Portugal

Mature cladodes of prickly-pear cactus (Opuntia amyclaea Tenore. `Reina') were treated with five wounding methods and four concentrations of potassium salt indole-3-butyric acid (K-IBA) to stimulate adventitious root formation. The wounding method and K-IBA had highly significant effects on root number and root dry mass of cladodes. Interaction between K-IBA and wounding methods showed that greater root number was obtained at the higher auxin concentrations and with wounding methods that had the greatest cut surface area. K-IBA concentrations from 4,144 to 41,442 μm (1,000 to 10,000 mg·L-1) increased root dry mass. Only the wounding method affected rotting of cladodes. Treatments allowing suberization had a higher percentage of nonrotted cladodes. This research validates the commercial practice of allowing cladodes to suberize early in the propagation cycle. K-IBA altered rooting polarity and stimulated adventitious root formation along the wounded cladode surfaces. The vertical nonsuberized wounding methods and auxin treatments are an excellent classroom demonstration for manipulating rooting polarity. Auxin application and wounding could be of commercial benefit for enhanced rooting in the clonal regeneration of new selections for prickly-pear cactus orchards.