Search Results

You are looking at 131 - 140 of 339 items for :

  • "leaf water potential" x
  • Refine by Access: All x
Clear All
Free access

Jeffrey Melkonian and David W. Wolfe

Cucumber (Cucumis sativus L. cv. Marketmore 80) plants were exposed to a soil water deficit and subsequently rewatered. Maximum stress intensity was -1.5 MPa midday leaf water potential compared to -0.6 to -0.8 MPa in the well watered control, eight days after withholding water. Midday stomatal conductance {ks), leaf turgor potential and water potential decreased in the stress treatment compared to the control beginning at the first sampling, two days after withholding water. The decrease in all three was approximately linear with time over the stress. Decreased leaf elongation was observed at the second sampling, three days after the initial decline in ks and five days after withholding water. At similar relative water content {RWC), osmotic potentials of the stress and control treatments were the same throughout most of the stress. Further, there was no difference in osmotic potential, at the same RWC, between the stress and control treatments 12 - 16 hours after rewatering. Split-root experiments were also conducted to examine a possible role of a non-hydraulic signal from roots in drying soil in the regulation of ks and leaf elongation in cucumber. No conclusive evidence of a signal was found despite significant decreases in soil water potential of one-half of the root system of the stress plants. However, fluctuating vapor pressure gradients (vpg) may have obscured evidence of a signal.

Free access

Roger Kjelgren

Changes in foliage temperature with environmental conditions were investigated for use in detecting water stress and scheduling irrigations of woody nursery plants. Midday leaf-minus-air temperature (Tl-Ta) and vapor pressure deficit (VPD) were monitored seasonally for container-grown shrubs--prostrate juniper, upright juniper and dwarf red-stem dogwood--at open and closed spacings. There was an inverse relationship between Tl-Ta and VPD for all species and spacings but with substantial scatter. Slopes for openand closed-spaced shrubs were not significantly different for any species. As container moisture and predawn leaf water potential declined during a dry-down cycle Tl-Ta increased significantly over well-watered levels for open-spaced plants and closed-spaced dogwood. In a field experiment Tl-Ta and VPD were monitored in young London plane, flowering pear, and redbud with-and-without irrigation. Only irrigated London plane Tl-Ta was inversely related to VPD. Leaves coated with petroleum jelly, however, had Tl-Ta levels consistently greater than uncoated leaves in all species, and non-irrigated Tl-Ta rose to those levels during a mid-summer drought. These results suggest that irrigation of container shrubs can be timed to increases in Tl-Ta with VPD, while comparing coated and non-coated Tl-Ta may be more successful for irrigated field production.

Free access

Jayne M. Zajicek, Nowell J. Adams, and Shelley A. McReynolds

Landscape plantings have been designed traditionally using aesthetic criteria with minimal consideration given to water requirements. The primary objective of this research was to develop quantitative information on water use of plant communities conventionally used in urban landscapes. Pots of Photinia × Fraseri (photinia Fraseri), Lagerstroemia indica 'Carolina Beauty' (crape myrtle), or Ligustrum japonicum (wax leaf ligustrum) were transplanted from 3.8 l into 75.7 l pots with either Stenotaphrum secundatum 'Texas Common' (St. Augustinegrass), Cynodon dactylon × C. transvallensis 'Tiffway' (bermudagrass), Trachelospermum asiaticum (Asiatic jasmine), or left with bare soil. Whole community water use was measured gravimetrically. In addition, sap flow rates were recorded for shrub species with stem flow gauges. Sap flow measurements were correlated to whole community water use recorded during the same time intervals. Whole community water use differed due to the groundcover component; bermudagrass, Asiatic jasmine, and bare soil communities used less water than St. Augustinegrass communities. Differences were also noted in stomatal conductance and leaf water potential among the species.

Free access

Roger Kjelgren and Craig Spihlman

Limited root development of nursery stock in root-control bags facilitates harvest but without irrigation may predispose stock to water stress. The effect of bags and irrigation on growth and water relations of field-grown Malus sieboldii var. zumi were investigated following transplanting as large liners into a silty-clay soil. Predawn leaf water potential (ψ), and midday stomatal conductance (gs) and ψ, were measured periodically through the season. Late-season osmotic potential (ψπ), caliper, leaf area, and root growth were also measured. Non-irrigated treatments exhibited water stress during an extended mid-summer drought, as predawn ψ and particularly gs were less than irrigated treatments, resulting in lower vegetative growth and ψπ. For combined bagged treatments water relations did not differ, but leaf area, root growth, and ψπ, but not caliper, were less than non-bagged trees. Growth measurements and ψπ of non-irrigated bagged trees, however, were consistently lower but nonsignificant than the other treatments. Bag-induced root reduction can limit some top growth even with optimum soil water. Moreover, in terms of potential Type-II errors extrapolated over a conventional production cycle, trees grown in root-control bags in normally non-irrigated soils may be more susceptible to water stress and subjected to further cumulative growth limitation.

Free access

Agnes A. Flores-Nimedez, Paul H. Li, and Charles C. Shin

Protection mechanism of a new compound, coded as GLK-8903, from chilling injury in bean plants was assessed by measuring several physiological parameters. The decline in leaf water potential caused by the chilling exposure to 4°C (day/night) was minimized when GLK-8903 was applied to the plants as compared to the non-treated control. Chilling causes an increase in electrolyte leakage, an indication of chilling injury that occurs at the site of plasma membrane. An increased electrolyte leakage was reduced in the GLK-8903-treated plants during chilling. Data from plasmolysis and deplasmolysis studies of epidermal cells suggest that GLK-8903 is able to stabilize the plasma membrane under stress condition by determining the permeability coefficients plasmometrically (1.96 cm s-1 × 10-4 for GLK-8903-treated plants vs. 4.00 for the controls 3 d at 4°C) with less decreased activity of the plasma membrane ATPase (9.36 μmol chl-1·h-1 for GLK-8903-treated plants vs. 5.04 for the controls 3 d at 4°C). GLK-8903 appears to have high application potential in protecting bean plants from chilling injury with improved yield.

Free access

Jin Wook Lee, Kenneth W. Mudge, and Joseph Lardner

American ginseng (Panax quinquefolium L.) contains pharmacologically active secondary compounds known as ginsenosides, which have been shown to be affected by both genetic and environmental factors. In this greenhouse experiment, we tested the hypothesis that ginsenosides would behave as “stress metabolites” and be associated with osmoregulation in response to drought stress. Two year-old seedlings, grown in 5-inch pots, were well watered for 40 days prior to the initiation of treatments. Plants in the drought stress treatment were watered every 20 days while the controls were watered every 10 days, and the experiment was terminated after 4 and 8 dry down cycles (80 days), respectively. Predawn leaf water potential and relative water content (RWC) of drought-stressed plants during a typical dry down cycle were lower than control plants. The diameter and weight of primary storage roots were decreased in the stressed treatment. The length of the main storage root and the longest secondary (fibrous) root were significantly increased by the drought stress treatment. Leaf chlorophyll content of drought-stressed plants was lower than controls. The osmotic potential of the drought-stressed ginseng was not lower than the control, indicating that ginsenoside is not involved in osmoregulation in response to drought stress. Furthermore, ginsenosides Rb1 and Rd, and total ginsenosides were significantly lower in primary roots of drought-stressed plants compared to control plants.

Free access

Todd C. Einhorn, Horst W. Caspari, and Steve Green

Approach-grafted 1-year-old `Gala'/M7 apple trees were grown with both tops for the remainder of the 2003 season in a greenhouse. Trees were supplied with >100% (control, PRD100) or 50% (PRD50, DI50) of daily ETc either applied to one root compartment only (PRD100, PRD50) or divided evenly across both root compartments (control and DI50). ETc was estimated from gravimetric measurements, and irrigation was switched between wet and dry root compartments several times throughout the experiment. Soil moisture was measured both gravimetrically (tripod) and volumetrically (time-domain reflectometry). Predawn leaf water potential (υpd) and single leaf gas exchange (photosynthesis, stomatal conductance, and transpiration) were recorded daily, and sap flow in stems and roots was monitored continuously using the heat-pulse technique. Leaves were collected for abscisic acid (ABA) determination following gas exchange measurements. Regardless of irrigation placement (i.e., PRD or DI), both 50% ETc treatments experienced similar declines in υpd and single leaf gas exchange relative to control levels. In addition, ABA concentrations were similar for PRD50 and DI50, and were significantly higher than the control and PRD100 treatments. PRD100 trees had similar υpd as control trees; however, gas exchange was reduced >25% compared to the control. Bulk leaf ABA concentration did not differ significantly from control levels and does not by itself explain the down regulation of stomata with PRD100.

Free access

Ken Shackel and David Paige

In a number of tree crops, we have found that the water potential of lower canopy, nontranspiring leaves, measured with the pressure chamber at midday (midday stem water potential), is an excellent index of plant water stress and can be used for irrigation scheduling. Because stem water potential is typically much higher than transpiring leaf water potential, a lower pressure is required for the measurement, allowing us to design and build a lightweight device that could be easily operated by hand. The prototype was designed for pressures up to 2 MPa, which is sufficient for most irrigation conditions. A number of design features were incorporated into the sealing gland to eliminate the need for retightening during the pressurization process, reduce the amount of tissue external to the pressure chamber, and allow a greater visibility of the petiole. Identical values to those obtained with the standard, compressed nitrogen pressure chamber were obtained over the entire 2-MPa range, and the time required using either device under field conditions was the same (about 1 min per measurement). A number of alternative protocols were tested, and we found that even substantial recutting of the petiole had no influence on the measured water potential, contrary to popular belief. We also found that the same sample could be remeasured multiple times (five), with no net change in the water potential, allowing the measurement to be checked if necessary. This device should be of great utility in field irrigation management.

Free access

Stephanie Burnett, Marc van Iersel, and Paul Thomas

Osmotic compounds, such as polyethylene glycol 8000 (PEG-8000), reduce plant elongation by imposing controlled drought. However, the effects of PEG-8000 on nutrient uptake are unknown. Impatiens `Dazzler Pink' (Impatiens walleriana Hook. F.) were grown hydroponically in modified Hoagland solutions containing 0, 10, 17.5, 25, 32.5, 40, 47.5, 55, or 62.5 g·L–1 PEG-8000. Impatiens were up to 68% shorter than control plants when grown with PEG-8000 in the nutrient solution. Plants treated with PEG-8000 rates above 25 g·L–1 were either damaged or similar in size to seedlings treated with 25 g·L–1 of PEG-8000. Impatiens leaf water potentials (Ψw) were positively correlated with plant height. PEG-8000 reduced the electrical conductivity of Hoagland solutions as much as 40% compared to nontreated Hoagland solutions, suggesting that PEG-8000 may bind some of the nutrient ions in solution. Foliar tissue of PEG-treated impatiens contained significantly less nitrogen, calcium, zinc, and copper, but significantly more phosphorus and nickel than tissue from nontreated impatiens. However, no nutrient deficiency symptoms were induced.

Free access

William W. Inman and William L. Bauerle

Recent work has shown that stomatal conductance (gs) and net photosynthesis (Anet) are responsive to the hydraulic conductance of the soil to leaf pathway (Xp). Two tree species with differing xylem structures were used to study the effect of systematic manipulations in Xp that elevated xylem hydraulic resistance. Simultaneous measures of gs, Anet, bulk leaf abscisic acid concentration (ABAL), leaf water potential (L), and whole plant transpiration (Ew) were taken under controlled environment conditions. Quercus shumardii Buckl. (shumard oak), a ring porous species and Acer rubrum L. `Summer Red' (red maple), a diffuse porous species, were studied to investigate the short-term hydraulic and chemical messenger response to drought. Both species decreased Anet, gs, L, and Ew in response to an immediate substrate moisture alteration. Relative to initial well-watered values, red maple Anet, gs, and Ew declined more than shumard oak. However, gs and Anet vs. whole-plant leaf specific hydraulic resistance was greater in shumard oak. In addition, the larger hydraulic resistance in shumard oak was attributed to higher shoot, as opposed to root, system resistance. The results indicate hydraulic resistance differences that may be attributed to the disparate xylem anatomy between the two species. This study also provides evidence to support the short-term hydraulic signal negative feedback link hypothesis between gs and the cavitation threshold, as opposed to chemical signaling via rapid accumulation from root-synthesized ABA.