Search Results

You are looking at 101 - 110 of 643 items for :

  • "cytokinin" x
  • All content x
Clear All
Free access

Anil P. Ranwala, William B. Miller, Terri I. Kirk, and P. Allen Hammer

The interactions of ancymidol drenches, postgreenhouse cold storage, and hormone sprays on postharvest leaf chlorosis and flower longevity of `Nellie White' Easter lilies (Lilium longiflorum Thunb.) were investigated. Ancymidol drenches (0.5 mg/plant twice) during early growth resulted in leaf chlorosis in the greenhouse which intensified further during postharvest. Cold storage (4 °C) of puffy bud stage plants for 2 weeks also accelerated leaf chlorosis. The combination of ancymidol treatment with cold storage resulted in the most severe leaf chlorosis. Promalin (GA4+7 and BA each at 100 mg·L-1) sprays completely prevented postharvest leaf chlorosis, whereas ProGibb (GA3 at 1000 mg·L-1) was ineffective. Cold storage reduced flower longevity and increased bud abortion, however, the degree of bud abortion varied among experiments in different years. Both ProGibb and Promalin sprays increased flower longevity. Compared to positive DIF (difference between day and night temperature) grown plants, forcing under negative DIF (-8 °C) increased the severity of postharvest leaf chlorosis. Leaves were sampled from basal, middle, and upper sections of the stem after 4 and 12 days in a postharvest evaluation room, and analyzed for soluble carbohydrates and N. Total leaf soluble carbohydrates and N concentrations were less in basal and middle sections of negative DIF-grown plants than in positive DIF-grown plants. Leaf chlorosis was associated with depletion of soluble carbohydrates and N in the leaves. Chemical names used: α-cyclopropyl-α-(p-methoxyphenyl)-5-pyrimidinemethanol (ancymidol); gibberellic acid (GA3); gibberellins A4A7 (GA4+7); N-(phenylmethyl)-1H-purine 6-amine (benzyladenine).

Free access

Matej Stopar, Brent L. Black, and Martin J. Bukovac

The effects of NAA, BA, or Accel on CO2 assimilation of shoot leaves of mature bearing Redchief `Delicious' and `Empire' apple (Malus ×domestica Borkh.) trees were evaluated over two seasons. BA at 50 mg·L-1 did not significantly affect any of the gas-exchange parameters measured. NAA (15 mg·L-1) consistently suppressed CO2 assimilation rate (from ≈10% to 24% below that of the control). This suppression was NAA-concentration dependent, continued for >15 days after treatment, and was completely overcome in `Empire', but only partially or not at all in `Delicious' when BA was combined with NAA. These results are discussed in relation to fruit thinning and NAA-induced inhibition of fruit growth in spur-type `Delicious'. Chemical names used: 2-(1-napthyl) acetic acid (NAA); N-(phenyl)-1H-purine-6-amine (BA); BA + gibberellin A (GA)4+7 (Accel).

Free access

Paul T. Wismer, J.T.A. Proctor, and D.C. Elfving

Benzyladenine (BA), carbaryl (CB), daminozide (DM), and naphthaleneacetic acid (NAA) were applied postbloom as fruitlet thinning agents to mature `Empire' apple (Malus domestica Borkh.) trees. BA, NAA, and CB reduced fruit set and yield per tree, and increased fruit size, percent dry weight, soluble solidscontent and return bloom. Fruit size was reduced, return bloom, length: diameter ratio and flesh firmness were increased, and fruit set and yield unaltered by DM. Although fruit set and yield were similar for BA, NAA, and CB, BA treated fruit were larger, indicating that BA increased fruit size beyond the effect attributable to chemical thinning alone. BA increased the rate of cell layer formation in the fruit cortex, indicating that BA stimulated cortical cell division. NAA, CB and DM had no effect on cell division rate. Mean cortical cell diameter at harvest was increased by NAA and CB and reduced by DM. Cell diameter at harvest in BA-treated fruit was similar to the control. These data support the hypothesis that BA-induced fruit size increase in `Empire' apple results from greater numbers of cells in the fruit cortex, whereas the fruit size increase due to NAA or CB is a consequence of larger cell size. Chemical names used: N-(phenylmethyl)-1H-purine-6-amine [benzyladenine (BA)]; 1-napthaleneacetic acid (NM); 1-naphthalenyl methylcarbamate [carbaryl (CB)]; butanedioic acid mono (2,2dimethyl hydrazide) [daminozide (DM)].

Full access

A.P. Papadopoulos, U. Saha, X. Hao, and S. Khosla

Encouraging results from previous trials on field vegetables led to the expectation that a kinetin foliar spray from the commercial product KIN-Gro (5000 ppm kinetin) on greenhouse vegetables would positively affect their growth and productivity. Thus, in this study, we evaluated the usefulness of this product on rockwool-grown `Bodega' cucumber (Cucumis sativus), `Rapsodie' tomato (Lycopersicum esculentum), and `4-Ever' and `444' pepper (Capsicum annuum) at the Greenhouse and Processing Crops Research Centre of Agriculture and Agri-Food Canada, Harrow, Ont. Two replicated experiments were conducted to study the effect of kinetin spray on growth and production of all three crops: the first in Spring-Summer 2004 and the second in Fall-Winter 2004. Foliar sprays of kinetin at 2.5, 5, and 10 ppm concentrations were tested against a water spray (control) on each crop. A 2.5-ppm kinetin spray had beneficial effects on the growth of cucumber transplants (taller plants and greater leaf area and fresh weight of leaves and stems). Furthermore, this treatment resulted in higher marketable yield in the Spring-Summer crop and in larger fruit size in the Fall-Winter crop. Regression analysis showed that cucumber marketable yield had an overall quadratic response to kinetin spray concentration in Spring-Summer season maximizing at 5.1 ppm kinetin. Kinetin spray also had beneficial effects on the growth of tomato seedlings, but not on yield. On the other hand, significant beneficial effects were observed on the growth of pepper seedlings and on marketable yield and fruit quality. Regression analysis showed that the response of pepper marketable yield to kinetin spray concentration was positive and linear. It must be noted that, given the rather short-term nature of our experiments, the observed beneficial effects of the kinetin sprays on yield can only be interpreted as beneficial effects on early yield rather than on the total yield. We concluded that under our growing conditions, cucumber production would benefit from a dilute (2.5 ppm) kinetin spray, and pepper production from a high concentration spray (10 ppm); tomato transplant growth will also benefit from a kinetin spray at 2.5 ppm. The results of this study could be of considerable significance to the greenhouse vegetable industry.

Free access

Erik B.G. Feibert, Clinton C. Shock, and Lamont D. Saunders

Eleven treatments in 1999 and thirteen treatments in 2000 containing single or combined nonconventional additives from eight manufacturers were compared with an untreated check for their effect on onion (Alliumcepa L.) yield and quality, and for their economic efficiency. The nonconventional additives were tested at commercial rates using the methods of application provided by the manufacturers. The products were applied to soil, foliage, or both. The treatments, including the check, were incorporated into standard cultural practices for onions. All treatments (with exception of an organic fertilizer treatment), including the check, were fertilized based on soil tests. In both years, none of the products evaluated significantly increased onion yield or quality compared to the untreated check. The organic fertilizer treatment, tested in 1999 only, resulted in significantly lower onion yield and size compared to the check. At the application rates used in this study, most of the products supplied plant nutrients or humic acid in amounts insufficient to expect improvements in crop production.

Free access

Kenneth R. Schroeder and Dennis P. Stimart

Hypocotyls from Antirrhinum majus L. were excised at 2 weeks of age from seedlings grown under a 16-hour photoperiod or continuous darkness. Explants were cultured on modified Murashige-Skoog (MS) medium containing 0, 0.44, 2.22, 4.44, 8.88, or 44.4 μm BA to investigate adventitious shoot formation. Excised hypocotyls from eight commercial cultivars, three inbred lines, and an F1 hybrid between two of the inbreds were cultured on MS medium containing 2.22 μm BA to assess genotypic effects on adventitious shoot formation. The influence of seedling age was assessed by excising hypocotyls from seedlings at 6, 10, 14, 18, 22, 26, or 30 days. Optimal conditions for adventitious shoot formation on excised hypocotyls included: seedling growth in a lighted environment, use of hypocotyls from 10-day-old seedlings, and culture on medium containing 2.22 μm BA for 3 weeks. Under these conditions, up to a 5-fold improvement in number of shoots per hypocotyl over previous studies was achieved. Adventitious shoot formation was genotype-dependent and appeared to be a dominant trait. Chemical name used: N 6-benzyladenine (BA).

Free access

Duane W. Greene, Wesley R. Autio, Jeffrey A. Erf, and Zhongyuan Y. Mao

BA thinned apple (Malus domestica Borkh.) fruits when applied to either the leaves or the fruit, although it was much more effective when applied to the leaves. BA increased fruit size independent of its effects on reducing crop load, but only when applied directly to the fruit. When applied to one of two fruit in a cluster, BA had no influence on abscission, fruit size, or fruit characteristics of the adjacent nontreated fruit. BA reduced fruit flesh Ca only on treated fruit and the response was inversely proportional to the increase in fruit size. More than 60% of the BA applied to a fruit was absorbed during 24 hours, and this amount was considerably larger than penetration through either the abaxial or adaxial leaf surface. BA treatments that thinned also increased ethylene production linearly in both leaves and fruit 24 hours after application, but the magnitude of increase was not considered large enough to be the primary cause for thinning. BA thinned spurs with two or three fruit more than spurs with one fruit, and it did not selectively thin to just one fruit per cluster. Chemical name used: N-(phenylmethyl)-1H-purine-6-amine [benzyladenine (BA)].

Free access

Guochen K. Png, Katherine S. Downes, and Beng H. Tan

feasibility of shoot micropropagation of L. macrantha has yet to be investigated. The provision of exogenous cytokinins to the explant through the culture medium at the shoot multiplication stage stimulates the formation of microshoots ( Hartmann et al

Free access

Don C. Elfving and Dwayne B. Visser

A new bioregulator, cyclanilide (CYC, Bayer Environmental Science, Research Triangle Park, NC 27709), was compared with a proprietary formulation of 6-benzyladenine and gibberellins A4 and A7 [Promalin (PR), Valent BioSciences, Walnut Creek, Calif.] for branching effects on sweet cherry trees. CYC stimulated the formation of lateral shoots on current-season's shoot growth under both orchard and nursery conditions. In the nursery CYC was as effective or better for feathering compared to PR in all cherry cultivars tested. There were no synergistic effects of CYC/PR tank mixes on feather development. Crotch angles of induced feathers were not different from the angles of feathers that formed spontaneously. The growth of CYC-induced feathers was sufficient to produce acceptable quality feathered trees. Trunk caliper of nursery trees was either not affected or reduced to a very minimal degree. CYC is effective for lateral branch induction in sweet cherry, especially in the nursery. Chemical names used: 1-(2,4-dichlorophenylaminocarbonyl)-cyclopropane carboxylic acid (cyclanilide); N-(phenylmethyl)-1H-purine-6-amine + gibberellins A4 and A7 (Promalin); polyoxyethylenepolypropoxypropanol, dihydroxypropane, 2-butoxyethanol (Regulaid).

Free access

Don C. Elfving and Dwayne B. Visser

A new bioregulator, cyclanilide (CYC, Bayer Environmental Science, Montvale, N.J.), was tested for growth-related effects on apple trees over three years. Although treatment with CYC produced small reductions in shoot length, its principal effect was to stimulate the formation of lateral shoots on current-season's shoot growth and from spurs on older wood. CYC treatment of `Scarletspur Delicious' apple trees in the nursery more than doubled the formation of well-developed feathers with wide crotch angles (≈60°) and with no effect on final tree height. CYC appeared to flatten the apples and reduce fruit size in one trial. CYC appears promising for lateral branch induction in apple, especially in the nursery. Chemical names used: 1-(2,4-dichlorophenylaminocarbonyl)-cyclopropane carboxylic acid (Cyclanilide); calcium 3-oxido-4-propionyl-5-oxo-4-propionylcyclohex-3-enecarboxylate (prohexadione-Ca, Apogee); N-(phenylmethyl)-1H-purine-6-amine + gibberellins A4A7 (Promalin); polyoxyethylenepolypropoxypropanol, dihydroxypropane, 2-butoxyethanol (Regulaid).