Search Results

You are looking at 101 - 110 of 360 items for :

  • "Cynodon dactylon" x
  • All content x
Clear All
Free access

Yaling Qian and Jack D. Fry

Greenhouse studies were conducted on three warm-season turfgrasses, `Midlawn' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy], `Prairie' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], and `Meyer' zoysiagrass (Zoysia japonica Steud.), and a cool-season turfgrass, `Mustang' tall fescue (Festuca arundinacea Schreb.) to determine 1) water relations and drought tolerance characteristics by subjecting container-grown grasses to drought and 2) potential relationships between osmotic adjustment (OA) and turf recovery after severe drought. Tall fescue was clipped at 6.3 cm once weekly, whereas warm-season grasses were clipped at 4.5 cm twice weekly. The threshold volumetric soil water content (SWC) at which a sharp decline in leaf water potential (ψL) occurred was higher for tall fescue than for warm-season grasses. Buffalograss exhibited the lowest and tall fescue exhibited the highest reduction in leaf pressure potential (ψP) per unit decline in ψL during dry down. Ranking of grasses for magnitude of OA was buffalograss (0.84 MPa) = zoysiagrass (0.77 MPa) > bermudagrass (0.60 MPa) > tall fescue (0.34 MPa). Grass coverage 2 weeks after irrigation was resumed was correlated positively with magnitude of OA (r = 0.66, P < 0.05).

Free access

A. Shiferaw, M.W. Smith, R.D. Eikenbary, and Don C. Arnold

Perennial legumes ground covers were evaluated in pecan (Carya illinoinensis) orchards to supply nitrogen and increase beneficial arthropods. Ground covers were `Kenland' red clover (Trifolium pratense), `Louisiana S-1' white clover (Trifolium repens), a mixture of these two legumes, or bermuda grass (Cynodon dactylon), each in 5 ha plots. Nitrogen was applied at 0-200 kg·ha-1 N in 50 kg intervals to bermuda grass plots, and was omitted on the legumes. Aphids feeding on the legumes attracted lady beetles; however, lady beetle populations in the tree canopies were not affected by ground cover treatment. The most abundant lady beetle species in legumes were Coleomegilla maculata lengi (77%) and Coccinella septempunctata (13%); whereas, dominant species in tree canopies were Coleomegilla maculata lengi (33%). Olla v-nigrum (20%). Cycloneda munda (18%) and Coccinella septempunctata (15%). Several other beneficial arthropods were sampled in legumes and tree canopies. Aphid populations feeding on pecans were low (peak population ≈ 2 aphids/leaf), and not affected by ground cover treatment. Legumes supplied the equivalent of applying 68-156 kg·ha-1 N.

Free access

Grady L. Miller

The effects of several soil amendments, following a single filling of core aerification holes, on growth and transpiration of `Tifdwarf' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt Davy] were examined during drought stress. Soil amendments had variable effects on turf quality. In general, turf grown in ZeoPro®- and Profile®-amended sand had the highest quality. Data indicated that the evaluated soil amendments have the potential to influence soil water content, ultimately influencing transpirational response to drought stress. Amended sand contained 1% to 16% more transpirable water compared with non-amended sand. Turfgrass grown in Axis®- and Isolite®-amended sand required 0.4 to 1.4 days longer to reach the endpoint (transpiration rate of drought stressed plants <12% of well-watered plants) during a period of rapid water depletion. Data from this study suggest that the total volume these amendments occupied in the root zone, following a single filling of core aerification holes in sand, may positively influence soil moisture status, resulting in an increase in drought avoidance.

Free access

Charles H. Peacock and Paul F. Daniel

Initial release of N from waste materials used as natural organic N carriers for turfgrass may be slow due to the need for microbial degradation. In a greenhouse study, `Rebel' tall fescue (Festucau arundinacea Schreb.) and `Tifway' bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy] growth response to a natural organic fertilizer (Turf Restore) amended or not amended with a soil-derived microbiological inoculum were compared with soluble urea using sterilized and nonsterilized soil. No interactions of soil sterilization and fertilizers were noted at 19 days after treatment (DAT). Urea fertilizer increased tall fescue growth rates by 68% in the nonsterilized soil and 126% in the sterilized soil compared to rates for turf grown with inoculated Turf Restore. Nitrogen uptake rate was 419% higher with urea-fertilized turf in the sterilized soil than for turf fertilized with inoculated Turf Restore. Soil sterilization at 33 DAT no longer affected turf response, but turf growth rate was 133% higher and N uptake 353% higher with urea fertilization than with inoculated Turf Restore. Infection of the plants with Rhizoctonia spp. at 72 DAT was unaffected by fertilizer treatments. Bermudagrass response was similar to that of tall fescue. Growth rate was 67% and N uptake 51% higher with urea than with Turf Restore through 17 DAT, regardless of inoculant addition. Amendment of the natural organic fertilizer Turf Restore with a soil-derived biological inoculant did not enhance turf growth rate or N uptake nor impact infection with Rhizoctonia spp.

Full access

Gregg C. Munshaw, Jeffery S. Beasley, Christian M. Baldwin, Justin Q. Moss, Kenneth L. Cropper, H. Wayne Philley, Chrissie A. Segars, and Barry R. Stewart

Hybrid bermudagrass [Cynodon dactylon × Cynodon transvaalensis] is frequently used throughout the southern and transitional climatic zones of the United States. These grasses can only be vegetatively propagated, such as by sprigging. Turf managers will often apply high rates of sprigs and nitrogen (N) in an attempt to minimize the time to establishment. However, little is known about how planting and N rates affect establishment. The objective of this study was to determine optimum sprigging and N rates during the establishment of ‘Latitude 36’ hybrid bermudagrass to minimize time to full surface cover. The study was conducted in four locations across the southern United States during Summer 2015. Sprigging rates consisted of 200, 400, 600, and 800 U.S. bushels/acre (9.3 gal/bushel), and N rates were 0, 11, 22, and 44 lb/acre N per week. Results showed that as the N rate increased, percent cover generally increased but only slightly [7% difference between high and low rates 5 weeks after planting (WAP)]. The effect of sprig rate on percent cover indicated that as rate increased, cover also increased. Differences in establishment due to sprig rate were present until 6 WAP at which time all plots achieved 100% cover. The greatest difference between N and sprig rate was that sprig rate showed differences in percent cover immediately, whereas N rate differences were not apparent until 2 WAP. Increasing sprig rather than N rate should be considered to speed up establishment.

Free access

Mark J. Gatschet, Charles M. Taliaferro, Jeffrey A. Anderson, David R. Porter, and Michael P. Anderson

Cold acclimation (CA) of `Midiron' and `Tifgreen' turf bermudagrasses (Cynodon dactylon L. Pers. × C. transvaalensis Burtt-Davy) induced tolerance to lower freezing temperatures and altered protein synthesis in crowns. LT50 (lethal temperature for 50% of plants) values were lowered ≈5C after 4 weeks in controlled-environment chambers under CA [8/2C (day/night) cycles with a 10-hour photoperiod] vs. non-CA (28/24C) conditions. LT50 values for `Midiron' plants decreased from -6.5 to -11.3C after CA and from -3.6 to -8.5C for `Tifgreen'. Proteins synthesized by isolated crowns were radiolabeled in vivo for 16 hours with 35 S-methionine and 35 S-cysteine. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and fluorography revealed increased synthesis of several cold-regulated (COR) proteins in CA crowns of both cultivars. Synthesis of intermediate molecular weight (MW) (32 to 37 kDa) and low-MW (20 to 26 kDa) COR proteins was greater in `Midiron' than `Tifgreen' crowns.

Free access

Kenneth B. Marcum and Charles L. Murdoch

Physiological responses to salinity and relative salt tolerance of six C4 turfgrasses were investigated. Grasses were grown in solution culture containing 1, 100, 200, 300, and 400 mm NaCl. Salinity tolerance was assessed according to reduction in relative shoot growth and turf quality with increased salinity. Manilagrass cv. Matrella (FC13521) (Zoysia matrella (L.) Merr.), seashore paspalum (Hawaii selection) (Paspalum vaginatum Swartz), and St. Augustinegrass (Hawaii selection) (Stenotaphrum secundatum Walt.) were tolerant, shoot growth being reduced 50% at ≈400 mm salinity. Bermudagrass cv. Tifway (Cynodon dactylon × C. transvaalensis Burtt-Davey) was intermediate in tolerance, shoot growth being reduced 50% at ≈270 mm salinity. Japanese lawngrass cv. Korean common (Zoysia japonica Steud) was salt-sensitive, while centipedegrass (common) (Eremochloa ophiuroides (Munro) Hack.) was very salt-sensitive, with total shoot mortality occurring at ≈230 and 170 mm salinity, respectively. Salinity tolerance was associated with exclusion of Na+ and Cl- from shoots, a process aided by leaf salt glands in manilagrass and bermudagrass. Shoot Na+ and Cl- levels were high at low (100 to 200 mm) salinity in centipedegrass and Japanese lawngrass resulting in leaf burn and shoot die-back. Levels of glycinebetaine and proline, proposed cytoplasmic compatible solutes, increased with increased salinity in the shoots of all grasses except centipedegrass, with tissue water levels reaching 107 and 96 mm at 400 mm salinity in bermudagrass and manilagrass, respectively. Glycinebetaine and proline may make a significant contribution to cytoplasmic osmotic adjustment under salinity in all grasses except centipedegrass.

Full access

Warren Roberts, James Shrefler, James Duthie, Jonathan Edelson, Bob Cartwright, and Nancy Roe

We conducted several experiments to determine the best system for production of spring cabbage (Brassica oleracea L. Capitata group) with conservation tillage (CT) in the southern plains of the United States. Rye (Secale cereale L.) was selected as the best cover crop to cover the soil in a short time. Raised beds were formed in the fall and planted with rye. With most studies, the rye was allowed to remain on the soil surface rather than being tilled into the soil. Planting densities, rates of nitrogen fertilizer, and herbicide materials were evaluated to determine the best system for cabbage production. In each study, various cover crop practices were compared with bare soil production systems. Soil erosion was reduced by the use of rye cover crops. Cabbage was produced in the CT system, but cabbage yields were higher in bare soil plots than in the rye-covered plots. We are also in the process of developing a system of CT that involves permanent bermudagrass [Cynodon dactylon (L.) Pers.] pastures and watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai]. This system allows both crops to be grown simultaneously on the same land.

Free access

Grady L. Miller

High rates of potassium (K) are often applied in an attempt to increase stress tolerance of hybrid bermudagrass [Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt Davy] turfs. Two field-grown bermudagrass cultivars, `Tifdwarf' and `Tifway', were used to determine the influence of applied K on plant nutrient content and nutrient retention in two soils. Six rates of K ranging from 0 to 390 kg·ha-1 were applied twice per month each growing season from 1992 to 1994. The cultivars were established on both a sand-peat (9:1 by volume) and loamy sand. Potassium chloride and K2SO4 were compared as sources of K, and were applied simultaneously with N applications. Extractable soil K and leaf tissue K concentrations increased with increasing K rates. There was a critical K fertilization level (74 to 84 kg·ha-1) for each cultivar and medium combination beyond which no increase in tissue concentration was observed. Increasing K fertilization resulted in a decrease in extractable Ca and Mg in both media with corresponding decreases in tissue Ca and Mg concentrations. High K rates appear to increase the potential for Ca and Mg deficiencies in bermudagrass, indicating that rates higher than those that provide sufficient K levels for normal growth should not be used.

Free access

Shawn Brewer and Michael Maurer

Transition of perennial ryegrass from bermudagrass athletic fields in the spring delays the establishment of bermudagrass when the establishment period is limited. The objective of this field study was to determine the effects of transition herbicides on the establishment of seeded bermudagrass. Treatments consisted of an untreated control, foramsulfuron, rimsulfuron, trifloxysulfuron sodium, metsulfuron methyl methyl, isoxaban, and oxadiazon at low- and high-labeled rates for transitioning perennial ryegrass. `Riviera' bermudagrass [Cynodon dactylon (L.) Pers.] seed was seeded immediately after treatment and 2 weeks after treatment. Turfgrass coverage was evaluated visually and by digital analysis. Although differences between methods of turfgrass coverage evaluation varied, the differences between treat-ments were similar. There was no significant differences in turfgrass establishment between foramsulfuron, rimsulfuron, trifloxysulfuron sodium, metsulfuron methyl methyl, and the control for either seeding date or rate. Turfgrass coverage was significantly less for isoxaban and no turfgrass was established in the oxadiazon treatments. Initial results of this research indicate that bermudagrass seed can be seeded immediately following the application of foramsulfuron, rimsulfuron, trifloxysulfuron sodium, and metsulfuron methyl methyl.