Search Results

You are looking at 91 - 100 of 2,940 items for :

  • cover crops x
  • All content x
Clear All
Free access

James W. Shrefler, Warren Roberts, Charles Webber, Jonathan Edelson, and Merritt Taylor

Commercial organic vegetable production requires using soil improvement practices and effective weed control measures. Rye (Secale cereale) cover crops are known to suppress annual weeds. Research was begun in 2004 to measure crop yield, annual weed infestation, and weed control requirements for vegetable planting systems that begin with a rye cover crop. Poultry litter was used to supply nutrients and was applied based on a soil test and commercial vegetable recommendations. Rye `Elbon' was seeded 21 Oct. 2004 on beds with 1.8-m centers. Zucchini squash (Cucurbita pepo) `Revenue' was planted the following year using three crop establishment dates, such that transplanting occurred on 6 May, 3 June, and 29 June. Planting system treatments included: conventional tillage (CT), CT and plastic mulch (P), CT with stale seedbed, mow, mow and burn-down, mow and shallow till (ST), ST and burn-down. Following field preparation, squash was transplanted in a single row at the bed center with 0.77-m plant spacing. Drip irrigation was used in all plantings. Emerging weeds were removed by hoeing. Squash was harvested from each planting over approximately 3 weeks and total marketable fruit counts were determined. Marketable yields with P were approximately double those of the CT and ST treatments in the 6 May transplanting. Yields were comparable for CT and ST in the 3 June transplanting, but were significantly lower for the P treatment. There were no significant differences among the treatments that received tillage in the 29 June planting. However, the non-tilled treatments had significantly lower yields compared to tilled treatments.

Free access

K.M. Batal, M.R. Hall, D.M. Granberry, J.T. Garrett, D.R. Decoteau, R.T. Dufault, G.D. Hoyt, T.C. Gilsanz, J.M. Davis, and D.C. Sanders

Vegetable Crops

Free access

Laura Avila, Johannes Scholberg, Lincoln Zotarelli, and Robert McSorely

Oral Session 11— Vegetable Crops Culture & Management 28 July 2006, 10:30 a.m.–12:00 p.m. Bayside B Moderator: Alan Walters

Free access

Robert H. Stamps

Four spunbonded crop covers were evaluated for use with and without irrigation for cold protection of leatherleaf fern [Rumohra adiantiformis (Forst.) Ching]. Heavier and less porous covers provided the most protection when used without over-the-crop irrigation. However, differences in cover weight and porosity did not affect temperatures under covers when over-the-crop irrigation was applied. Damage to immature fronds was decreased by 75% to 99% when the covers were used alone and by 98% to 99% when the covers were used with over-the-crop irrigation. Covers had no effect on frond vase life.

Free access

Clyde L. Elmore, Scott Steinmaus, and Dean Donaldson

Cover crops are grown in vineyards for many reasons, including erosion control, maintaining organic matter and changing pest complexes. Changing a management practice from using resident vegetation as a cover to other planted cover crops will change the vineyard floor flora. The cover crops of `Olge' oat, `Olge' oat and purple vetch, and purple vetch alone were compared to resident vegetation as winter planted cover crops. The cover was harvested in April of each year and blown under the vine row; The cover crop remains were disked into the middles after mulching. Three varieties of subterranean clover were planted in the vine rows at each location in one-half of each of the cover crops. The winter annual weed species, black and wild mustard, common chickweed and annual bluegrass decreased in the inter-row areas. The perennial weed field bindweed increased in all cover crop treatments.

Free access

Jeanine M. Davis, D.R. Decoteau, G.D. Hoyt, K.D. Batal, D.C. Sanders, J.T. Garrett, and R.J. Dufault

Vegetable Crops

Free access

Herbert H. Bryan and Yuncong Li

Cover crops have become an integral part of vegetable production practices in south Florida for weed control and retaining nutrients during the heavy summer rains. A wide variety of plants are used as cover crops in south Florida. Obviously, legumes contribute more nitrogen by fixing N compared to nonlegumes such as sorghum sudan grass, which is a common cover crop in this area. We have evaluated 10 cover crops, where six were legumes in 1997. In 1998, four cover crops (sunnhemp, sorghum sudan, sesbania, and aeschynomene) were evaluated. The sunnhemp (Crotalaria juncea L.) stands out from other tested cover crops for 2 years. Sunnhemp produced 8960 to 11,400 kg dry weight/ha and fixed up to 285 kg N/ha. The evaluation of effects of sunnhemp and other cover crops on the following tomato growth and yield are still in progress and will be discussed.

Free access

Dennis R. Decoteau, J.M. Davis, G.D. Hoyt, K.M. Batal, D.C. Sanders, J.T. Garrett, and R.J. Dufault

Vegetable Crops

Free access

Warren Roberts and Bob Cartwright

Vegetable Crops

Free access

T.K. Hartz, P.R. Johnstone, E.M. Miyao, and R.M. Davis

Mustard (Brassica spp.) cover crop residue has been reported to have significant `biofumigant' action when incorporated into soil, potentially providing disease suppression and yield improvement for the succeeding crop. The effects of growing over-winter mustard cover crops preceding processing tomato (Lycopersicon escultentum Mill.) production were investigated in six field trials in the Sacramento Valley of California from 2002–04. A selection of mustard cover crops were compared to a legume cover crop mix, a fallow-bed treatment (the current grower practice in the region), and in two of the six trials, fumigation treatments using metam sodium. Mustard cover crops removed 115 to 350 kg·ha–1 N from the soil profile, reducing NO3-N leaching potential. Soil populations of Verticillium dahliae Kleb. and Fusarium spp. were unaffected by the cover crops, and there was no evidence of soilborne disease suppression on subsequent tomato crops. Mustard cover crops increased tomato yield in one field, and reduced yield in two fields. In one of two fields, metam sodium fumigation significantly increased tomato yield. We conclude that, while environmental benefits may be achieved, mustard cover cropping offers no immediate agronomic benefit for processing tomato production.