Search Results

You are looking at 91 - 100 of 979 items for :

  • "weed controls" x
  • All content x
Clear All
Free access

Chad Hutchinson

The economics of pesticide production and registration has limited the number of pesticides registered for use in minor crops relative to agronomic crops. Current regulations such as the Food Quality Protection Act may further reduce the number of efficacious compounds registered for use on minor crops. Traditionally, the lack of registered pesticides for minor crops has been offset by soil fumigation. However, methyl bromide use is scheduled for phase-out in the United States by 2005, leaving a pest control vacuum in some crops. Loss of methyl bromide has stimulated research into the use of other soil fumigants for weed control. Methyl bromide, methyl iodide, propargyl bromide, 1,3-dichloropropene, and metham sodium have been tested alone and in combination with chloropicrin in laboratory experiments to determine their efficacy against Cyperus esculentus L (yellow nutsedge) tubers. All the fumigants controlled nutsedge equal to or better than methyl bromide and resulted in synergistic control when combined with chloropicrin. Although excellent weed control can be achieved with all the fumigants in the laboratory, weed control in the field with the same fumigant may result in poor or no control. Further research is necessary to optimize the field application of the remaining fumigants to maximize pest control. In the near future, to achieve the broad-spectrum pest control obtained with methyl bromide, growers will need to rely on multiple control strategies. The most promising replacement program for broad-spectrum pest control includes dichloropropene/chloropicrin fumigation followed by a herbicide program or mechanical weed control. To control problem weeds that are not controlled with the in-season herbicide program, a chemical fallow program should be instituted in the off-season to reduce weed pressure during the cropping season.

Free access

Craig A. Dilley, Gail R. Nonnecke, and Nick E. Christians

Corn gluten meal (CGM), a by-product of corn wet-milling, has weed control properties and is a N source. The weed control properties of CGM have been identified in previous studies. The hydrolysate is a water soluble, concentrated extract of CGM that contains between 10% to 14% N. Our objective was to investigate corn gluten hydrolysate as a weed control product and N source in `Jewel' strawberry production. The field experiment was a randomized complete block with a factorial arrangement of treatments with four replications. Treatments included application of granular CGM, CGM hydrolysate, urea, urea and DCPA (Dacthal), and a control (no application). Granular CGM and urea were incorporated into the soil at a depth of 2.5 cm with N at 0, 29, 59, and 88 g/plot. Plot size was 1 × 3 m. Percent weed cover data on 12 Aug. showed plots receiving the 29 g N from CGM hydrolysate had 48% less weed cover than the control (0 g). Plant growth variables showed similar numbers of runners and runner plants among all nitrogen sources.

Free access

S.L. File, P.A. Knight, C.G. Gilliam, D.B. Reynolds, and R.L. Harkess

Non-target herbicide losses pose environmental concerns for nurseries. Therefore, the objective of this research was to determine the ability of each alternative mulch to suppress weed growth when compared to traditional chemical methods. Uniform quart liners of Lagersroemia indica × faurei `Natchez' were planted in 15-gal containers 15 June 1999, on a gravel container pad using overhead irrigation. Weed pressure was uniform. Treatments include Regal 0-0 3 G (3 lb ai/a) as a broadcast or individual container application, recycled newspaper pellets (1 inch thick), Spin-out coated recycled newspaper pellets (1 inch thick) geotextile disks (Spin-out coated), kenaf mulch, waste tire crumbles, wheat straw (2 inches thick), oat straw (2 inches thick), cereal rye straw (2 inches thick), paper mill sludge (2 inches thick), a handweeded control, and a weedy control. Treatments were organized in a RCBD consisting of eight single-plant replicates. The geotextile disks, newspaper pellets treated with spin-out, and shredded rubber tire treatments all had better than 80% weed control from 30 to 180 DAT. These alternative weed control methods can provide a good alternative to conventional weed control practices in large container-grown ornamental.

Free access

Derek M. Law and Brent Rowell

A 2-yearfield study in Lexington, Ky., evaluated the use of mulches in two organic production systems for bell peppers. Two planting strategies, flat ground and plastic-covered raised beds, and five weed control practices, straw mulch, compost mulch, wood chip mulch, corn gluten, and “living mulch” clover were tested. In 2003, the mulches were applied at planting, while in 2004, shallow soil cultivation was used for 6 weeks prior to mulch application. In 2003, the experimental field had been under a winter wheat cover crop; in 2004, the field had been cover cropped for more than a year prior to planting with sudex/cowpea (Summer 2003) and rye/hairy vetch (Winter/Spring 2004). Bell pepper yields in both bed treatments were very low in 2003 due to extensive weed competition. In 2004, plastic-covered raised beds coupled with mulching in-between beds resulted in significantly higher yields than the peppers grown on flat ground. These yields were as high as yields from a conventional pepper trial conducted on the same farm. Compost mulch, continuous cultivation, and wood chip mulch provided excellent weed control in 2004. Straw mulch was variable in its weed control efficacy; corn gluten and “living mulch” clover were ineffective.

Free access

John J. McCue, James R. Schupp, and Highmoor Farm

The growth and fruiting of 10-year-old `Mcintosh'/M.7 apple trees were compared under the following weed management systems: 1)untreated control; 2) herbicide spray (paraquat + oryzalin); 3) rotary tilling applied in May, June and July; 4) rotary tilling plus herbicide (oryzalin); 5) rotary tilling plus oats sown in August. All weed control methods increased tree growth compared to the untreated control over three years. Yield and fruit size were increased by the herbicide and the rotary tilled treatment. Rotary tilling plus herbicide increased yield but fruit size was larger than controls in 1990 only. Rotary tilling plus oats produced yield and fruit size equivalent to the control. In 1989 and 1990 rotary tilling alone provided less weed control compared to the herbicide treatment, while in July 1991, the reverse was true. Rotary tilling with herbicide and with oats have demonstrated weed control comparable to or better than the herbicide treatment except for the rotary tilled plus oats treatment in 1990. There were no differences among treatments in fruit color, maturity and percent soluble solids.

Full access

Mathieu Ngouajio

On behalf of the Weed Control and Pest Management Working Group (WCPM) of ASHS, I would like to thank Drs. William W. Kirk (Michigan State University), Andrea B. da Rocha (Santa Catarina State University, Brazil), Milton McGiffen, Jr. (University of

Free access

Christine Crosby, Hector Valenzuela, Bernard Kratky, and Carl Evensen

In the tropics, weed control is a year-round concern. The use of cover crops in a conservation tillage system allows for the production of a crop biomass that can be killed and mowed, and later used as mulching material to help reduce weed growth. This study compared yields of three vegetable species grown in two conventional tillage systems, one weeded and one unweeded control, and in two no-tillage treatments using two different cover crop species, oats (Avena sativa L. `Cauyse') and rye grain (Secale cereale L.). The cover crops were seeded (112 kg/ha) in Spring 1998 in 4 × 23-m plots in a RCB design with six replications per treatment, and mowed down at the flowering stage before transplanting the seedlings. Data collection throughout the experimental period included quadrant weed counts, biomass levels, and crop marketable yields. Weed suppression was compared with the yields of the vegetable crops. The greatest vegetable yields were in the conventionally hand-weeded control and the worst in the un-weeded controls. Weed species composition varied depending on the cover crop species treatment. The rye better suppressed weed growth than the oats, with greater control of grass species. Rye, however, suppressed romaine and bell pepper yields more than the oat treatments. Similarly greater eggplant yields and more fruit per plant were found in the oat treatment than in the rye. Both cover crops suppressed weed growth for the first month; however, by the second month most plots had extensive weed growth. This study showed that at the given cover crop seeding rate, the mulch produced was not enough to reduce weed growth and provide acceptable yields of various vegetable crops.

Free access

Yahya K. Al-Hinai and Teryl R. Roper

This experiment was conducted to determine temporal weed management parameters for tart cherry (Prunus cerasus L.) orchards. Annual ryegrass (Lolium multiflorum L.) and lambsquarter (Chenopodium album L.) were planted in tree rows of a 4-year-old tart cherry orchard. Weeds either were not controlled or controlled with nonresidual herbicides during the following intervals: all-summer; May, June, July, or August; preharvest (April-July); or postharvest (late July to frost). Trees in all-summer, June, and preharvest weed-free plots had more shoot growth, more nodes, longer internodes, greater leaf area, and higher concentrations of leaf nitrogen than did those in the weedy control and postharvest, July, or August treatments. A larger increase in trunk circumference was observed in all-summer and preharvest weed-free plots than in postharvest and weedy plots. Early-summer weed control was important for tree vegetative growth. Tree yield (fruit weight and number) was greater on trees without weed competition postharvest than in those treated in May, June, July, or in weedy controls. Late-season (after late July) weed control is therefore important for fruit yield.

Free access

Brian A. Kahn and Raymond Joe Schatzer

The herbicides paraquat, trifluralin, and metolachlor were compared for efficacy of weed control in cowpea [Vigna unguiculata (L.) Walp.] with and without cultivation as a supplemental strategy. Herbicides also were compared against a no cultivation-no herbicide treatment (control) and against cultivation without an herbicide. Cultivation had no significant effect on seed yield, biological yield, or harvest index of cowpea. Paraquat, applied before seeding but after emergence of weeds, was ineffective for weed control and usually did not change cowpea yield from that obtained without an herbicide. Trifluralin and metolachlor more than tripled cowpea seed yield compared with that obtained without an herbicide in 1988, when potential weed pressure was 886 g·m-2 (dry weight). The main effects of trifluralin and metolachlor were not significant for cowpea seed yield in 1989, when potential weed pressure was 319 g·m-2 (dry weight). However, in 1989, these two herbicides still increased cowpea seed yield compared with that of the control and increased net farm income by more than $300/ha compared with the income obtained from the control. Chemical names used 1,1'-dimethyl-4,4' -bipyridlnium salts (paraquat); 2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl) benzenamine (trifluralin); 2-chloro-N-(2-ethyl-6 -methylphenyl)-N-(2-methoxy-l-methylethyl) acetamide (metolachlor).

Free access

Chad M. Hutchinson and Milton E. McGiffen Jr.

A 2-year field project was conducted in Thermal, Calif., to investigate cowpea [Vigna unguiculata (L.) Walp.] mulch as an alternative weed control option in pepper (Capsicum annuum L.) production. Treatments included: bare ground (BG) with hand weeding, BG with no weeding, cowpea mulch (CM) with hand weeding, and CM with no weeding. Cowpea was seeded in July on 76-cm beds and irrigated with buried drip line. Two weeks prior to transplanting peppers, irrigation water was turned off to desiccate the cowpea plants. In September, cowpea was cut at the soil line, mulch was returned to the top of the bed, and pepper plants were transplanted into the mulch and fertilized through the drip line. Every 2 weeks, the number of weeds emerged and pepper plant height were recorded. Fruit production, pepper plant dry weight, and weed dry weight were recorded at harvest in December. Fewer weeds emerged in CM than in BG. The final weed population in nonweeded CM was reduced 80% and 90% in comparison with nonweeded BG in 1997 and 1998, respectively. Weed dry weights in nonweeded CM were 67% and 90% less than those in nonweeded BG over the same period. In 1997 and 1998, respectively, pepper plants produced 202% and 156% more dry weight, as well as greater fruit weight, in CM than in BG. There were no differences in mean fruit weight. Cowpea mulch provided season-long weed control without herbicides while promoting plant growth and fruit production.