Search Results

You are looking at 91 - 100 of 552 items for :

  • All content x
Clear All
Free access

Jose L. Perez, G.K. Jayaprakasha, and Bhimanagouda S. Patil

Grapefruit has potential health-promoting properties due to the presence of multitude bioactive compounds. Ongoing cell culture and animal studies in our lab using limonoids and flavonoids have provided strong evidence of their protective properties for preventing chronic diseases. Studies related to D-glucarate, a natural, nontoxic bioactive compound found in grapefruit, has not been explored. One of the derivatives, such as D-glucaro-1,4-lactone, is reported to be a potent ß-glucuronidase inhibitor. With the inhibition of ß-glucuronidase enzyme, glucuronidation will be favored. Glucuronidation is a conjugation process through which potentially carcinogenic environmental toxins can be neutralized. In this context, quantification of glucarate using HPLC was developed. Samples from grapefruits were prepared by heating fruit extract with distilled water. Further, the extract was homogenized and centrifuged. The supernatant was treated with petroleum ether to remove non-polar substances. Then the extract was subject to ion exchange chromatography. Fractions were collected and analyzed by analytical HPLC for the quantification of D-glucarate content and its lactone. This project was supported by the USDA-CSREES grant for Designing Foods for Health through the Vegetable and Fruit Improvement Center.

Free access

David Graper and Will Healy

Non flowering Alstroemeria `Regina' plants were divided into aerial components: stems and apical and basal leaves or underground components: rhizome, storage roots, stele and fibrous roots. Samples were collected from distal and proximal ends of the rhizome to allow comparisons between structures of different ages. Ethanol soluble sugars were extracted and measured using HPLC. Starch was degraded to glucose using amyloglucosidase and measured.

There were no age differences in the starch, total soluble sugar (TSUGAR) or total soluble carbohydrates (TCHO) in the rhizome or aerial portions of the plant. There was a preferential partitioning of starch, sucrose, TSUGAR and TCHO to underground plant parts. The storage roots were the primary sink for the stored carbohydrates. Stems contained large concentration of glucose while fructose was found in storage roots and old stems. Sucrose was found primarily in old steles and storage roots. Starch was partitioned almost exclusively into the storage roots with no difference due to age of the storage root. Up to 42% of the TCHO in the old storage roots was composed of a carbohydrate which co-chromatogramed with melezitose using HPLC.

Free access

C.B. Ely, R.E. Frans, T.L. Lavy, R.E. Talbert, and J.D. Mattice

Two-year-old highbush blueberry bushes (Vaccinium corymbosum L. `Collins') were treated in Mar. 1985 with diuron or simazine at 2.2 or 4.5 kg a.i./ha. No residues were detected by reverse-phase high-performance liquid chromatography-ultraviolet absorbance detection (HPLC-UV) from treated berries that were harvested in June. Methiocarb was applied in May 1986 at 0.84 and 3 kg·ha-1 over the top of 3-year-old `Collins' when the berries began to ripen. Reverse-phase HPLC-UV of berries treated with methiocarb at 3 kg·ha-1 had combined residues of methiocarb and its sulfone and sulfoxide metabolites of 13.1 ppm from unrinsed and 7 ppm from rinsed berries harvested on the day of treatment; 4.9 ppm from unrinsed and 4 ppm from rinsed berries harvested 4 days after treatment; and 2.4 ppm from unrinsed and 2.5 ppm from rinsed berries harvested 8 days after treatment. Unrinsed berries treated with methiocarb at 0.84 kg·ha-1 had 5.7 ppm residue on the day of treatment and 1 ppm 8 days later. Residues from berries treated with methiocarb at 0.84 or 3 kg·ha-1 were below the legal tolerance level of 5 ppm after the required 7-day waiting period. Chemical names used: n'-(3,4-dichlorophenyl)-N,N -dimethylurea (diuron); 6-chloro- N,N' -diethyl-1,3,5-triazine-2,4-diamine (simazine); 3,5-dimethyl-4-(methylthio)phenol methylcarbamate (methiocarb).

Free access

Shibu M. Poulose*, Jennifer S. Brodbelt, Leonard M. Pike, and Bhimanagouda S. Patil

Limonoids, chemically related triterpinoids predominantly found in citrus and neem relatives, are known to play a pivotal role in the prevention of different types of cancer and cardiovascular diseases. Since the concentrations of these compounds are low in the plant tissues, the isolation of pure compounds is the limiting factor for the individual activity studies in animal models. In this study, combinations of chromatographic techniques were used to isolate limonoid aglycones and limonoid glucosides from citrus byproducts such as seeds and molasses. The compounds were initially extracted with different polar solvents and the concentrated extracts were passed through a series of adsorbent resin (SP-70) and ion-exchange resins (WA-30, Dowex-50, Q-sepharose) to remove further impurities. The use of increasing ionic strength of NaCl from 0 to 800 mm to release the exchanged compounds from the ion exchange columns further separated the limonoids from flavonoids, which was confirmed through TLC, UV, and analytical HPLC methods. Individual compounds were further purified using flash chromatography and preparative HPLC methods and identified by using LC-MS analysis. Direct crystallization of limonin resulted in a 17% increase in the yield as compared to the previously reported methods. The results suggest that application of these purification methods are useful for the bulk purification of compounds in order to further investigate their biological activity.

Free access

M.D. Whiting, G. Paliyath, and D.P. Murr

Apple fruits (Malus domestica Borkh. cv. `Red Delicious') stored for 6 months at 2°C in air were analyzed for headspace volatiles by SPME-GC and for surface components by HPLC of hexane extracts. Analysis of headspace volatiles evolved from whole fruit showed five major volatiles that were identified previously as: acetic acid, hexyl ester; hexanoic acid, butyl ester; octanoic acid, propyl ester; hexanoic acid, hexyl ester; and the sesquiterpene, α-farnesene. No significant differences existed in these volatiles between scald-developing and non-scald developing apples. To explore potential differences in volatile evolution, fruit developing scald were cut (axial plane) into scalding and non-scalding halves for analysis. In all cases, volatile emission was much higher from the non-scalding side of the fruit, and the ratio of volatile levels from non-scalding to scalding averaged greater that 2. Various regions of tissue from the same fruit were extracted in hexane for estimation of levels of α-farnesene and its potential catabolites by HPLC. The levels and proportions of the components were nearly identical to those observed during headspace volatile analysis of half fruit. The results suggest that there are potential differences in α-farnesene metabolism an/or permeability of apple cuticle to volatiles between scald-developing and non-scald developing regions of apple fruit.

Free access

Xin Zhao, Edward Carey, James Nechols, Kim Williams, and Weiqun Wang

Implications of dietary phenolic compounds for human health and disease prevention have been indicated by a body of literature. A greenhouse pot study was performed to investigate the impacts of fertilizer source and preventive insecticide application on phenolic compound levels in pac choi [Brassica rapa (L.) cv. Mei Qing]. A two-way randomized complete-block design with five replications was used in this experiment. Fertilizer source consisted of two levels: conventional fertilizer (pre-plant application of Osmocote slow-release fertilizer), and organic fertilizer (pre-plant application of vermicompost and fertigation with compost tea and fish emulsion). Insecticide application consisted of three levels: organic (pyrethrin) vs. conventional (permethrin), and a plain water control. At harvest, total phenolics and individual phenolic compounds in pac choi leaves (blades) were analyzed by Folin assay and HPLC, respectively. Head weight of pac choi was significantly higher under conventional fertilizer treatment, while it was not affected by insecticides. Total phenolic content of pac choi was significantly increased by organic fertilizer treatment. HPLC results indicated that organic fertilizer treatment resulted in significantly higher levels of individual phenolic compounds, including chlorogenic acid and ferulic acid. In contrast, preventive insecticide application showed little effect on the phenolics in pac choi. Correlation analysis excluded the influence of plant size (head weight) on phenolic content in pac choi. Differential N-forms, rates of nutrient release, and/or variable nutrient content in organic and conventional fertilizer treatments may contribute to elevated phenolic content in organically fertilized pac choi.

Free access

Arthur D. Wall, Marisa M. Wall, and Joe N. Corgan

1 Graduate research assistant. 2 Associate professor. 3 Professor emeritus and Jose Fernandez chair for crop production. We thank Cindy Waddell for support in the HPLC analysis, Jose Luis Mendoza, Helen Redden, Melodie Borden, and M.R. Doyle for

Free access

Susan E. Trusty and William B. Miller

. Current address: Dept. of Horticulture, Clemson Univ., Clemson, SC 29634. We gratefully acknowledge the Fred C. Gloeckner Foundation for HPLC equipment and Yoder Brothers for providing rooted cuttings. We also thank Larry Kasperson for plant care, Della

Free access

J.G.M. Cutting, D.K. Strydom, G. Jacobs, D.U. Bellstedt, K.J. Van Der Merwe, and E.W. Weiler

Abbreviations: ELISA, enzyme-linked immunosorbent assay; DNOC, dinitro-o-cresol; HPLC, high-performance liquid chromatography; RIA, radioimmunoassay. 1 Present address: Dept. of Horticultural Science, Univ. of Natal, P.O. Box 375, Pietermaritzburg

Free access

Michael Cavalier, Armen Kachatryan, Evodokia Menelaou, Jack Losso, and Don LaBonte

Fresh leaves of six sweetpotato [Ipomoea batatas (L.) Lam.] genotypes, `Beauregard', `Bienville', L 99-35, L 00-8, L 01-145, and L 01-29 were characterized for lutein. Lutein is a carotenoid capable of delaying blindness-related macular degeneration. The content of lutein in sweetpotato ranged from 0.38 to 0.58 mg·g-1 fresh weight. Beta-carotene separated from lutein on HPLC chromatograms, and, when spiked in pure lutein extract, did not interfere with lutein separation. Stems were also characterized and found not to contain lutein. Our results showed that sweetpotato leaves are an excellent source of dietary lutein and surpass levels found in leafy crucifers. Leaves of sweetpotato and a related species are used as human food in some countries and could be a source of extracted lutein for commercial purposes.