Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Elspeth A. MacRae x
  • Refine by Access: All x
Clear All Modify Search
Free access

Teresa F. Wegrzyn and Elspeth A. MacRae

The activities of several cell wall-associated enzymes of the outer pericarp were assayed during softening of kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson var. deliciosa cv. Hayward] treated with ethylene. The activity of polygalacturonase (EC 3.2.1.15) increased slightly during fruit softening, while β-galactosidase (EC 3.2.1.23) activity remained constant. Salt-extracted pectinesterase (EC 3.1.1.11) activity increased during ethylene treatment, then dropped rapidly to low levels as fruit softened. Residual pectinesterase activity, extracted after digestion of the cell wall pellet with a fungal enzyme mix, decreased on softening. The rapid softening of kiwifruit in response to ethylene treatment may be initiated by an induction of pectinesterase activity, causing increased de-esterification of cell wall pectins, followed by degradation of solubilized pectin.

Free access

Allan B. Woolf, Elspeth A. MacRae, Karen J. Spooner, and Robert J. Redgwell

Modifications to solubilized cell wall polyuronides of sweet persimmon (Diospyros kaki L. `Fuyu') were examined during development of chilling injury (CI) during storage and in response to heat treatments that alleviated CI. Storage at 0 °C caused the solubilization of a polyuronide fraction that possessed a higher average molecular mass than polyuronide solubilized during normal ripening. The viscosity of this fraction was 30-times that of normally ripened fruit. Fruit heat-treated before or following storage contained a soluble polyuronide fraction with a markedly lower average molecular mass and decreased viscosity than in chilling injured fruit. Heat treatment also impeded an increase in viscosity of the cell wall material if applied before storage. CI (gelling) was related to the release of polyuronide from the cell wall during storage and its lack of subsequent degradation. Heat treatments retarded polyuronide release but promoted degradation of solubilized polyuronides.