Search Results

You are looking at 61 - 70 of 78 items for

  • Author or Editor: Genhua Niu x
  • All content x
Clear All Modify Search
Full access

James E. Faust, Jeffrey W. Adelberg, Kelly P. Lewis, and Genhua Niu

The effects of storage temperature and shoot preparation of elephant ears (Colocasia antiquorum `Illustris') were examined to determine how to successfully store plants prior to greenhouse forcing. A series of experiments were conducted that provided storage temperatures of 4, 7, 10, 13, or 16 °C (39.2, 44.6, 50.0, 55.4, or 60.8 °F), and plants were placed into storage with the shoots uncut or cut to 3.0 cm (1.18 inches) above the surface of the growing medium. The storage duration ranged from 40 to 49 days. All plants stored at 4 or 7 °C died. Plant survival was 89% to 100% at 10 °C, while plant survival was 100% at 13 or 16 °C. Shoot emergence and plant growth was faster following storage at 13 and 16 °C, than storage at 10 °C. Storage at 16 °C resulted in leaf growth occurring during storage, which was undesirable. Removing shoots prior to storage had no effect on plant survival and performance during forcing. A fungicide drench with iprodione immediately prior to storage did not improve plant survival. This study suggests that 13 °C is near the base temperature for leaf development of elephant ears, thus the plants survive at this temperature with no growth occurring. Shoot removal prior to storage is recommended in order to optimize storage room space.

Free access

Genhua Niu, Denise S. Rodriguez, Raul I. Cabrera, Cynthia McKenney, and Wayne Mackay

Relatively little work has been done to determine the water requirements of ornamental plants. To meet this need, five woody ornamental species including Abelia grandiflora `Edward Goucher', Buddleia davidii `Burgundy', Ilex vomitoria `Pride of Houston', Euonymus japonica, and Nerium oleander `Hardy Pink' were investigated to determine their water use and crop coefficients. Parallel experiments were conducted by growing the shrubs both in 56-L (15 gal) drainage lysimeters and in aboveground 10-L containers. Water use per plant, crop coefficients, and overall growth parameters differed by species and culture system. Of the five species tested, Buddleia and Nerium had higher water use per plant in the lysimeters than in the containers. There was no significant difference in water use per plant for Abelia, Euonymus, and Ilex between the two culture systems. Crop coefficients and growth indices of Abelia, Euonymus, and Ilex were statistically similar between the two systems. The growth index of Buddleia and Nerium was much higher in the lysimeters than in the containers. Abelia and Euonymus had more growth in the containers than in the lysimeters while Ilex had slightly larger leaf area in the lysimeters than in the containers. The culture system did not affect the water use per unit leaf area of all species. Therefore, our results indicated that by quantifying the leaf area, the plant water use in the two culture systems is convertible.

Free access

Genhua Niu, Denise S. Rodriguez, Kevin Crosby, Daniel Leskovar, and John Jifon

Chile peppers are economically important crops in southern regions of the United States. Limited information is available on irrigation management with low-quality water or on salt-affected soils. The objective of this study was to determine the relative salt tolerance of 20 genotypes of chile peppers. In Expt. 1, seeds of selected pepper types (Anaheim, Ancho, Cayenne, Paprika, Jalapeño, Habanero, and Serrano) were germinated in potting mix and seedlings were grown in 2.6-L pots. Six weeks after sowing, salinity treatments were initiated by irrigating plants with nutrient solutions of different electrical conductivities (ECs): 1.4 (control), 3.0, or 6.0 dS·m−1. After 1 month of initiating treatments, shoots were harvested and dry weights were determined. All plants survived and no visual salt injury was observed regardless of pepper variety and treatment. There were no statistical differences between control and saline solution treatments in final height and shoot dry weight of Habanero 1, ‘Early Jalapeño’, ‘AZ-20’, ‘NuMex Joe E. Parker’, and ‘NuMex Sandia’. In Expt. 2, seeds of 20 genotypes were directly sown in 2.6-L containers filled with loamy sand. Saline water irrigation was initiated 37 days after sowing by irrigating plants either with saline (nutrient solution based, similar to Expt. 1) or nutrient solution (control). More than half the genotypes did not have 100% survival in the salinity treatment. Ancho 1, Ancho 2, Cayenne 1, ‘Early Jalapeño’, and ‘AZ-20’ had 100% survival regardless of salinity treatment. No plants of ‘TAM Mild Habanero’ survived when irrigated with saline water and less than half of the plants survived in the control. The relative tolerance of chile genotypes to salinity varied with substrate in some genotypes. From the combined results of the two experiments, the 20 pepper genotypes were ranked for salt tolerance based on seedling survival, visual quality, and growth. ‘Early Jalapeño’ and ‘AZ-20’ were relatively tolerant to salinity among the 20 genotypes, whereas ‘TAM Mild Habanero’ and ‘Ben Villalon’ were sensitive. Ancho 1, Ancho 2, Cayenne 1, and Cayenne 2 also had relatively high tolerance based on survival and visual quality, although shoot growth was reduced significantly.

Free access

Genhua Niu, Denise S. Rodriguez, Rosa Cabrera, John Jifon, Daniel Leskovar, and Kevin Crosby

High soil salinity often results in poor stand establishment, reduced plant growth, and reduced yield of many horticultural crops such as peppers (Capsicum annuum). We investigated the effects of soil salinity and soil type on seedling emergence and growth of four commercial peppers (‘NuMex Joe E. Parker’, ‘NuMex Nematador’, ‘NuMex Primavera’, and ‘Jupiter’) in greenhouse experiments. Seeds were sown in either a loamy sand or a silt loam soil in pots and irrigated with saline solutions at electrical conductivity of 0.9 (tap water), 3.0, or 6.0 dS·m−1 (Expt. 1) or at 0.0 [reverse osmosis (RO) water], 0.9, or 1.5 dS·m−1 (Expt. 2). No seedling emergence was observed in treatments irrigated with 3.0 or 6.0 dS·m−1 solutions. The salinity at the top soil layer increased linearly with time when subirrigated with tap and saline solutions in both soil types, whereas no substantial increase in soil salinity was found when subirrigated with RO water or overhead irrigation with tap water. Salt accumulation at the top soil layer was greater in loamy sand than in silt loam. Seedling emergence percent subirrigated with RO water ranged from 70% to 80% in loamy sand and 45% to 70% in silt loam, depending on pepper cultivars. When subirrigated with tap water and saline solutions, the emergence percent ranged from 0% to 60%, depending on pepper and soil types. In Expt. 3, seedlings were germinated in commercial potting mix and grown in 1.8-L pots containing commercial potting mix. Saline solution treatments of 1.4 (control, nutrient solution), 2.1, 2.9, 3.5, or 4.2 dS·m−1 were initiated when seedlings had 11 to 13 leaves. Five weeks after initiating saline water irrigation, the reduction in shoot dry weight was greater in ‘Jupiter’ and ‘NuMex Primavera’ as compared with ‘NuMex Joe E. Parker’ and ‘NuMex Nematador’, but the differences were small.

Free access

Genhua Niu, Royal D. Heins, Arthur C. Cameron, and William H. Carlson

Flower size generally decreases as temperature increases. The objective of this research was to investigate during development when flowers of Campanula carpatica Jacq. `Blue Clips' and `Birch Hybrid' are sensitive to temperature by conducting two temperature-transfer experiments. In the first experiment, plants were grown initially at 20 °C and then transferred at visible bud to 14, 17, 20, 23, or 26 °C until flower. In the second experiment, plants were transferred from 14 to 26 °C or from 26 to 14 °C at 1, 3, or 5 weeks (`Blue Clips') or at 1, 2, or 3 weeks (`Birch Hybrid') after flower induction. Temperature before visible bud had little effect on final flower size for both species. For example, flower diameter of `Blue Clips' was similar among plants grown at constant 14 °C or grown at 20 °C initially and then transferred at visible bud to 14 or 17 °C. Similarly, flower diameter of plants grown at constant 26 °C was similar to those grown at 20 °C initially and then transferred at visible bud to 26 °C. Flower diameter in these species is correlated with the temperature after VB in the 14 to 26 °C and decreases linearly as the temperature after VB increases.

Free access

Genhua Niu, Royal D. Heins, Arthur C. Cameron, and William H. Carlson

Campanula carpatica Jacq. `Blue Clips' plants were grown in a greenhouse under ambient (400 μmol·mol-1) and enriched (600 μmol·mol-1) CO2 concentrations, three daily light integrals (DLI; 4.2, 10.8, and 15.8 mol/m per day), and nine combinations of day and night temperatures created by moving plants every 12 h among three temperatures (15, 20, and 25 °C). Time to flower decreased as plant average daily temperature (ADT) increased. Flower diameter decreased linearly as ADT increased in the 15 to 25 °C range and was not related to the difference between day and night temperatures (DIF). Increasing DLI from 4.2 to 10.8 mol/m per day also increased flower diameter by 3 to 4 mm regardless of temperature, but no difference was observed between 10.8 and 15.8 mol/m per day. Carbon dioxide enrichment increased flower diameter by 2 to 3 mm. Number of flower buds and dry mass at high and medium DLI decreased as plant ADT increased. Plant height increased as DIF increased from ñ6 to 12 °C. Number of flower buds and dry mass were correlated closely with the ratio of DLI to daily thermal time using a base temperature of 0 °C.

Free access

Genhua Niu, Royal D. Heins, Arthur C. Cameron, and William H. Carlson

Pansy [Viola ×wittrockiana Gams. `Delta Yellow Blotch' (Yellow) and `Delta Primrose Blotch' (Primrose)] plants were grown in a greenhouse under two CO2 concentrations [ambient (≈400 μmol·mol-1) and enriched (≈600 μmol·mol-1)], three daily light integrals (DLI; 4.1, 10.6, and 15.6 mol·m-2·d-1), and nine combinations of day and night temperatures created by moving plants every 12 h among three temperatures (15, 20, and 25 °C). Time to flower decreased and rate of flower development increased as plant average daily temperature (ADT) increased at all DLIs for Yellow or at high and medium DLIs for Primrose. Increasing the DLI from 4.1 to 10.6 mol·m-2·d-1 also decreased time to flower by 4 and 12 days for Yellow and Primrose, respectively. Both cultivars' flower size and Yellow's dry weight [(DW); shoot, flower bud, and total] decreased linearly as plant ADT increased at high and medium DLIs, regardless of how temperature was delivered during day and night. DW in Yellow increased 50% to 100% when DLI increased from 4.1 to 10.6 mol·m-2·d-1 under both CO2 concentrations. Flower size in Yellow and Primrose increased 25% under both CO2 conditions as DLI increased from 4.1 to 10.6 mol·m-2·d-1, but there was no increase between 10.6 and 15.6 mol·m-2·d-1, regardless of CO2 concentration. Plant height and flower peduncle length in Yellow increased linearly as the difference between day and night temperatures (DIF) increased; the increase was larger under lower than higher DLIs. The ratio of leaf length to width (LL/LW) and petiole length in Yellow increased as DIF increased at medium and low DLIs. Carbon dioxide enrichment increased flower size by 4% to 10% and DW by 10% to 30% except for that of the shoot at medium DLI, but did not affect flower developmental rate or morphology. DW of vegetative and reproductive parts of the plant was correlated closely with photothermal ratio, a parameter that describes the combined effect of temperature and light.

Full access

Youping Sun, Genhua Niu, Christina Perez, H. Brent Pemberton, and James Altland

Marigolds (Tagetes sp.) are ornamental plants with fine-textured, dark green foliage, and yellow, orange, or bicolored flowers. The relative salt tolerance of eight marigolds [‘Discovery Orange’, ‘Discovery Yellow’, ‘Taishan Gold’, ‘Taishan Orange’, and ‘Taishan Yellow’ african marigold (Tagetes erecta); ‘Hot Pak Gold’, ‘Hot Pak Orange’, and ‘Hot Pak Yellow’ french marigold (Tagetes patula)] was evaluated in a greenhouse experiment. Plants were irrigated weekly with nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at an EC of 3.0 or 6.0 dS·m−1 (EC 3 or EC 6). Marigold plants began to show foliar salt damage (leaf burn and necrosis) at 6 weeks after the initiation of treatment. At harvest (9 weeks after the initiation of treatment), ‘Discovery Orange’, ‘Discovery Yellow’, ‘Taishan Gold’, and ‘Taishan Yellow’ plants exhibited severe foliar salt damage with visual scores less than 2 (on a scale of 0 to 5, with 0 = dead and 5 = excellent with no foliar salt damage) in EC 6. In the same treatment, ‘Hot Pak Gold’ and ‘Taishan Orange’ plants all died and only one of nine ‘Hot Pak Orange’ and ‘Hot Pak Yellow’ plants survived. In EC 3, all cultivars had slight or minimal foliar salt damage with visual scores ≈4 with the exception of Taishan Gold and Taishan Orange plants that showed moderate foliar damage with a visual score of 2.3 and 2.1, respectively. Treatment EC 3 reduced the flower number of ‘Discovery Orange’, ‘Discovery Yellow’, ‘Hot Pak Gold’, and ‘Hot Pak Yellow’ by 52%, 28%, 50%, and 30%, respectively, whereas EC 6 decreased the flower number of ‘Discovery Orange’ and ‘Discovery Yellow’ by 48% and 52%, respectively. In addition, both EC 3 and EC 6 did not reduce total dry weight (DW) of any cultivars, except Hot Pak Yellow and Taishan Yellow. In conclusion, all marigold cultivars are moderately sensitive to salt. ‘Discovery Orange’, ‘Taishan Yellow’, ‘Discovery Yellow’, and ‘Taishan Gold’ were more tolerant than ‘Hot Pak Gold’, ‘Hot Pak Orange’, ‘Hot Pak Yellow’, and ‘Taishan Orange’.

Full access

Susmitha Nambuthiri, Amy Fulcher, Andrew K. Koeser, Robert Geneve, and Genhua Niu

Market researchers have found that nursery and greenhouse production practices that reduce plastic use can increase consumer interest. However, there are broader crop performance, production efficiency, and environmental factors that must be considered before adopting containers made with alternative materials. This review highlights current commercially available alternative containers and parent materials. In addition, findings from recent and ongoing nursery, greenhouse, and landscape trials are synthesized, identifying common themes, inconsistencies, research gaps, and future research needs.

Full access

Yuxiang Wang, Youping Sun, Genhua Niu, Chaoyi Deng, Yi Wang, and Jorge Gardea-Torresdey

Ornamental grasses are commonly used in urban landscapes in Utah and the Intermountain West of the United States. The relative salt tolerance of Eragrostis spectabilis (Pursh) Steud. (purple love grass), Miscanthus sinensis Andersson ‘Gracillimus’ (maiden grass), Panicum virgatum L. ‘Northwind’ (switchgrass), and Schizachyrium scoparium (Michx.) Nash (little bluestem) were evaluated in a greenhouse. Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m–1 (control), or saline solution at an EC of 5.0 or 10.0 dS·m–1. At harvest (65 days after the initiation of treatment), P. virgatum and S. scoparium exhibited no foliar salt damage, and E. spectabilis and M. sinensis had minimal foliar salt damage when irrigated with saline solution at an EC of 5.0 dS·m–1. At an EC of 10.0 dS·m–1, P. virgatum and S. scoparium still had no foliar salt damage, but E. spectabilis and M. sinensis displayed slight foliar salt damage, with visual scores greater than 3 (0 = dead; 5 = excellent). Compared with the control, saline solution at an EC of 5.0 and 10.0 dS·m–1 reduced the shoot dry weight of all ornamental grasses by 25% and 46%, respectively. The leaf sodium (Na+) concentration of E. spectabilis, M. sinensis, P. virgatum, and S. scoparium irrigated with saline solution at an EC of 10.0 dS·m–1 increased 14.3, 52.6, 5.3, and 1.7 times, respectively, and the chloride (Cl) concentration increased by 9.4, 11.1, 2.8, and 2.7 times, respectively. As a result of the salt-induced water deficit, plant height, leaf area, number of inflorescences and tillers, net photosynthesis rate (Pn), stomatal conductance (g S), and transpiration rate of four tested ornamental grasses decreased to some extent. Although high Na+ and Cl accumulated in the leaf tissue, all ornamental grass species still had a good visual quality, with average visual scores greater than 3. In conclusion, all ornamental grasses showed a very strong tolerance to the salinity levels used in this research.