Search Results

You are looking at 51 - 58 of 58 items for

  • Author or Editor: Richard L. Fery x
  • All content x
Clear All Modify Search
Free access

Richard L. Fery, Philip D. Dukes Sr., and Judy A. Thies

Full access

William B. Rutter, Chandrasekar S. Kousik, Judy A. Thies, Mark W. Farnham, and Richard L. Fery

Free access

Howard F. Harrison, Judy A. Thies, Richard L. Fery, and J. Powell Smith

A preliminary screening experiment was conducted to evaluate 47 cowpea [Vigna unguiculata, (L.) Walp.] genotypes for use as a weed-suppressing cover crop. Lines evaluated in this study included forage varieties, PI accessions, experimental breeding lines, and land races of unknown origin. Of these, 11 were selected for further testing on the basis of vigorous growth and weed-suppressing ability. In a field experiment repeated over 4 years, the selected genotypes were not different from the leading cover crop cultivar, `Iron Clay', in biomass production. Vigor ratings, vine growth ratings, and canopy widths of some genotypes exceeded those of `Iron Clay'. Vigor ratings and canopy measurements were efficient selection criteria that could be useful for breeding cover crop cowpea cultivars. All selections except an African cultivar, `Lalita', were highly resistant to southern root knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood], and the genotypes varied in seed size, photoperiod, and response to diseases.

Free access

Howard F. Harrison, Judy A. Thies, Richard L. Fery, and J. Powell Smith

A preliminary screening experiment was conducted to evaluate 47 cowpea [Vigna unguiculata (L.) Walp.] genotypes for use as a weed-suppressing cover crop. Of these, 11 were selected for further testing on the basis of vigorous growth and weed-suppressing ability. In a field experiment repeated over 4 years, the selected genotypes were not different from the leading cover crop cultivar `Iron Clay' in biomass production. Vigor ratings, vine growth ratings, and canopy widths of some genotypes exceeded those of `Iron Clay' Vigor ratings and canopy measurements were efficient selection criteria that could be useful for breeding cover crop cowpea cultivars. All except one selection were highly resistant to southern root knot nematode [Meloidogyne incognita (Kofoid and White) Chitwood], and the selections varied in seed size, photoperiod, and response to foliar diseases.

Free access

Howard F. Harrison Jr., D. Michael Jackson, Judy A. Thies, Richard L. Fery, and J. Powell Smith

Free access

Kevin M. Crosby, Richard L. Fery, Daniel I. Leskovar, and Justin Butcher

Free access

Judy A. Thies, Richard L. Fery, John D. Mueller, Gilbert Miller, and Joseph Varne

Resistance of two sets of bell pepper [(Capsicum annuum L. var. annuum (Grossum Group)] cultivars near-isogenic for the N gene that conditions resistance to root-knot nematodes [Meloidogyne incognita (Chitwood) Kofoid and White, M. arenaria (Neal) Chitwood races 1 and 2, and M. javanica (Treub) Chitwood] was evaluated in field tests at Blackville, S.C. and Charleston, S.C. The isogenic bell pepper sets were `Charleston Belle' (NN) and `Keystone Resistant Giant' (nn), and `Carolina Wonder' (NN) and `Yolo Wonder B' (nn). The resistant cultivars Charleston Belle and Carolina Wonder were highly resistant; root galling was minimal for both cultivars at both test sites. The susceptible cultivars Keystone Resistant Giant and Yolo Wonder B were highly susceptible; root galling was severe at both test sites. `Charleston Belle' had 96.9% fewer eggs per g fresh root than `Keystone Resistant Giant', and `Carolina Wonder' had 98.3% fewer eggs per g fresh root than `Yolo Wonder B' (averaged over both test sites). `Charleston Belle' and `Carolina Wonder' exhibited a high level of resistance in field studies at both sites. These results demonstrate that resistance conferred by the N gene for root-knot nematode resistance is effective in field-planted bell pepper. Root-knot nematode resistant bell peppers should provide economical and environmentally compatible alternatives to methyl bromide and other nematicides for managing M. incognita.

Free access

Judy A. Thies, Richard F. Davis, John D. Mueller, Richard L. Fery, David B. Langston, and Gilbert Miller

Root-knot nematode-resistant `Charleston Belle' bell pepper (Capsicum annuum L. var. annuum) and metam sodium treatment were evaluated for managing the southern root-knot nematode [Meloidogyne incognita (Chitwood) Kofoid and White] in fall-cropped cucumber (Cucumis sativus L.). `Charleston Belle' and its susceptible recurrent parent, `Keystone Resistant Giant', were planted as spring crops at Blackville, S.C., and Tifton, Ga. `Charleston Belle' exhibited high resistance and `Keystone Resistant Giant' was susceptible at both locations. After termination of the bell pepper crop, one-half of the plots were treated with metam sodium delivered through the drip irrigation system. Cucumber yields and numbers of fruit were highest for cucumber grown in plots treated with metam sodium following either `Charleston Belle' or `Keystone Resistant Giant'; however, root gall severity and numbers of M. incognita eggs in the roots were lowest for cucumber grown in plots treated with metam sodium following `Charleston Belle'. Conversely, root gall severity and nematode reproduction were highest for cucumber grown in plots following `Keystone Resistant Giant' without metam sodium treatment. Application of metam sodium through the drip irrigation system following a spring crop of root-knot nematode-resistant bell pepper should reduce severity of root galling and reproduction of M. incognita as well as increase fruit yield of fall-cropped cucumber.