Search Results

You are looking at 51 - 60 of 61 items for

  • Author or Editor: Michael R. Evans x
  • All content x
Clear All Modify Search
Free access

Richard J. McAvoy, Bernard B. Bible, and Michael R. Evans

The early onset of bract necrosis in poinsettia (Euphorbia pulcherrima Willd. ex. Klotzch) is characterized by small dark-stained spots that precede the development of enlarged necrotic lesions. Electron micrographs of adaxial epidermal and subepidermal tissues with early symptoms of necrosis revealed large, electron-dense deposits in cell vacuoles. These spherical bodies resembled condensed tannins observed in the epidermal tissues of peach and apple fruit. Chemical analysis of bract tissues confirmed the presence of condensed tannins. Furthermore, there were higher concentrations of condensed tannin in bract samples with 2-mm-diameter lesions than in samples with lesions <0.5 mm (equivalent to catechin concentrations of 59 and 13 mg·g-1 fresh mass, respectively). No tannin bodies were observed in parallel samples of healthy-appearing bracts in which only trace concentrations of condensed tannins were measured (0.2 mg·g-1 fresh mass). The evidence suggests an association between condensed tannin accumulation in localized areas of the bract and the early appearance of bract necrosis symptoms.

Free access

Michael R. Evans, Neil O. Anderson, and Harold F. Wilkins

Various durations of rooting at 15C and storage at 5.X and exogenous GA, (1000 ppm) application were used on dormant unrooted peony (Paeonia lactiflora Pall.) tubers of `Sarah Bernhardt', `Festiva Supreme' `Krinkled White', and `Scarlet O'Hara'. Four weeks of cooling were sufficient to break dormancy. Days to emergence, first bud color, and anthesis were reduced as the length of cold storage increased from 4 to 20 weeks. Height and number of shoots emerging per pot increased with increased cooling. All flower buds aborted when tubers were cooled for 20 weeks. When noncooled tubers were given a 1000-ppm GA, soil drench, shoots emerged within 7.5 days; untreated tubers failed to emerge after 5 months. When tubers were treated with GA,, all flower buds aborted.

Free access

Michael R. Evans, Giampaolo Zanin, and Todd J. Cavins

Water-holding capacity represents the volume of water retained by a substrate after a saturating irrigation and drainage, and it is often referred to as container capacity. However, water-holding capacity is a time-specific measurement that is limited to the status of the substrate immediately after saturation and drainage. It does not provide information regarding how quickly water is lost from the substrate, the substrate water status over time, or the irrigation frequency required for a substrate under specific conditions. A new procedure was developed that generated a single numeric value that described the wetness of a substrate and in so doing took into account the substrate's water-holding capacity and drying rate. This value was referred to as an E-value. For substrates included in this study, E-values ranged from a low of 6 for parboiled fresh rice hulls (PBH) to a high of 93 for the commercial substrate Metro Mix 360. The procedure was shown to generate E-values that were as would be expected for the evaluated substrates and also ranked the substrates as would have been expected. Over repeated evaluations, the procedure was demonstrated to have a maximum inherent variability of plus or minus one E-value.

Free access

Michael R. Evans, James N. Smith, and Raymond Cloyd

Fifteen-centimeter (1700-ml) containers were prepared for this experiment by sealing the drainage holes with insect screen (Hummert International, Earth City, Mo.) that had openings of 0.026 cm × 0.0805 cm. Containers were filled with substrates composed of either a 80% sphagnum peat or 80% coir. The remainder of the substrates was composed of perlite. Rooted cuttings of Euphorbia pulcherrima `Freedom' were planted into the containers and the containers were sealed with the insect screen and plants were allowed to grow and the substrate to age for 2 weeks. Fungus gnat (Bradysia spp.) larvae were collected using potato disks placed on the surface of infested substrates. After 3 days, larvae were collected from the disks, and 10 larvae were added per container. Uninoculated controls were included. After a period of 6 weeks, the adult population was sampled by placing 2.5 × 5.0-cm yellow sticky cards in each container. The larval population was sampled by placing a 4-cm-diameter potato disk on the substrate surface of each container. Fungus gnat larvae and adults were recovered from both sphagnum peat and coir-based substrates. Neither the number of adults nor the number of larvae recovered were significantly different between sphagnum peat and coir-based substrates.

Full access

Michael R. Evans, Johann S. Buck, and Paolo Sambo

The primary objective of this research was to compare the pH, electrical conductivity (EC), and primary macronutrient status of three ground parboiled fresh rice hull (PBH) products to sphagnum peat when used as a root substrate over 56 days in a greenhouse environment. The three grades of ground rice hull products were produced by grinding PBH and passing the ground product through different screens. One grade (P3) was passed through a 2.00-mm screen and captured on a 1.00-mm screen. The second grade (P4) was passed through a 1.00-mm screen and captured on 0.50-mm screen. A third ground rice hull product (RH3) was a commercially available, ground PBH material that was ground in a hammer mill until it passed through a screen with 1.18-mm-diameter openings and was collected on a screen with 0.18-mm openings. The pH of sphagnum peat ranged from 3.4 to 3.7 across time. The pH of RH3 and P3 increased from 4.7 to 7.1 on day 5 and 14, respectively, before decreasing to 6.3 and 6.7, respectively, on day 56. The pH of P4 increased from 4.8 to 6.9 on day 6 before decreasing to 6.6 on day 56. The P4 had an EC of 1.2 dS·m−1, which was higher than that of peat, RH3, and P3, which had similar EC of 0.7 to 0.8 dS·m−1 regardless of time. The ammonium (NH4 +) concentration was unaffected by time. Peat had an NH4 + concentration of 6.4 mg·L−1, which was lower than that of the ground rice hull products. The P3 had an NH4 + concentration of 14.6 mg·L−1, which was higher than that of RH3 and P4. The RH3 and P4 had similar NH4 + concentrations of 11.8 and 10.8 mg·L−1, respectively. The nitrate (NO3 ) concentration was unaffected by time. The RH3 had a NO3 concentration of 8.2 mg·L−1, which was significantly higher than that of peat, P3, and P4, which had similar NO3 concentrations of 0.5 mg·L−1. The phosphorus (P) concentration in peat ranged from 1.3 to 2.5 mg·L−1 across the sampling times, and peat had a lower P concentration than all rice hull products, which ranged from 57.4 to 104.4 mg·L−1. The potassium (K) concentration in peat ranged from 2 to 5 mg·L−1 across the sampling times and was always lower than that of the rice hull products, which had a K concentration ranging from 195 to 394 mg·L−1. Because pH, P, and K concentrations were above recommended concentrations, ground rice hull products would not be suitable as a stand-alone substrate but might be amended with materials such as elemental sulfur or iron sulfate to adjust the pH or blended with other components to reduce the P and K concentrations to within recommended concentrations.

Free access

Michael R. Evans, Todd J. Cavins, Jeff S. Kuehny, Richard L. Harkess, and Greer R. Lane

Economics and logistics have greatly reduced or eliminated the ability of horticulture instructors to use field trips or on-site visits as educational tools. This is especially problematic in the field of greenhouse management and controlled environment agriculture, since the facilities and technologies used are essential to the discipline. To address this problem, we developed 15 DVD-based virtual field trips (VFT's) that instructors may use to demonstrate to students the most up-to-date facilities, technologies, and management strategies used in greenhouse management (ornamental and food crops) and controlled environment agriculture (GCEA). Each VFT included a preface with background information about the company, a tour organized by subject chapters, self-examination, and a teacher's guide with additional information and case studies. Each land-grant institution with an instructional program in greenhouse management of controlled-environment agriculture will be provided a free copy of each VFT, which will benefit all instructors of GCEA in the United States.

Open access

Nathan J. Eylands, Michael R. Evans, and Angela M. Shaw

Various saponins have demonstrated allelochemical effects such as bactericidal impacts as well as antimycotic activity against some plant pathogenic fungi, thereby acting to benefit plant growth and development. A commercial saponin solution was evaluated for bactericidal effects against Escherichia coli and growth of lettuce (Lactuca sativa) in a hydroponic system. E. coli (P4, P13, and P68) inoculum at final concentration of 108 colony-forming units (cfu)/mL was added to 130 L of a fertilized solution recirculating in a nutrient film technique (NFT) system used to grow ‘Rex’ lettuce. After 5 weeks in the NFT system, E. coli populations were lowest in the inoculated treatment that did not contain any saponin addition (0.89 log cfu/mL) when compared with all other inoculated treatments (P < 0.001). The treatment containing 100 µg·mL−1 saponin extract had an E. coli population of 4.61 log cfu/mL after 5 weeks that was higher than treatments containing 25 µg·mL−1 or less (P < 0.0001). Thus, higher E. coli populations were observed at higher saponin concentrations. Plant growth was also inhibited by increasing saponin concentrations. Fresh and dry shoot weight were both higher in the inoculated and uninoculated treatments without the saponin addition after 5 weeks in the NFT system (P < 0.0001). Lettuce head diameter was smaller when exposed to saponin treatments with concentrations of 50 and 100 µg·mL−1 (P < 0.0001). Lettuce leaves were also tested for the potential of E. coli to travel systemically to the edible portions of the plant. No E. coli was found to travel in this manner. It was concluded that steroidal saponins extracted from mojave yucca (Yucca schidigera) are not an acceptable compound for use in mitigation of E. coli in hydroponic fertilizer solution due to its ineffectiveness as a bactericide and its negative impact on lettuce growth.

Free access

Michael R. Evans, Bernard W. Krumpelman, Ramsey Sealy, and Craig S. Rothrock

Vinca (Catharanthus roseus) is a common annual bedding plant species that is susceptible to root and stem rot caused by Phytophthora nicotianae. The experimental design was a 6×2×1 factorial with a total of 12 treatment combinations that had five replications and was repeated twice. Vinca seeds were planted in the middle nine plugs of a 5×5 five-milliliter round plug tray filled with sphagnum peat (control) or peat amended with 2.1 kg/m3 calcitic lime, 5.9 and 7.3 kg/m3 potassium silicate alone and combined with 3.0 kg/m3 calcium sulfate. A peat control drenched with metalaxyl after inoculation was also included. After germination, when the seedlings had one true leaf, half of the treatments were inoculated with 500 cfu of Phytophthora nicotianae per plug cell while the other half remained uninoculated. The percentage of germination for the potassium silicate combined with calcium sulfate (KSCS) (79% and 78%) was similar to the control (86%) and the metalaxyl treatment (83%), whereas the potassium silicate alone had poorer germination (69% and 71%) and plant growth. The percentage of mortality for the KSCS treatment (6% and 14%) was similar to the metalaxyl treatment (9%) but was significantly less than the control (100%). The average dry shoot and root weights for the KSCS treatments (4.4 and 4.9 mg; 2.7 and 2.2 mg) were similar to the metalaxyl treatment (5.0 and 3.6 mg) and the uninoculated control (5.0 and 3.2 mg), but were higher than the potassium silicate treatment alone (2.1 and 1.6 mg; 0.7 and 0.6 mg).

Full access

Michael R. Evans, Andrew K. Koeser, Guihong Bi, Susmitha Nambuthiri, Robert Geneve, Sarah Taylor Lovell, and J. Ryan Stewart

Nine commercially available biocontainers and a plastic control were evaluated at Fayetteville, AR, and Crystal Springs, MS, to determine the irrigation interval and total water required to grow a crop of ‘Cooler Grape’ vinca (Catharanthus roseus) with or without the use of plastic shuttle trays. Additionally, the rate at which water passed through the container wall of each container was assessed with or without the use of a shuttle tray. Slotted rice hull, coconut fiber, peat, wood fiber, dairy manure, and straw containers were constructed with water-permeable materials or had openings in the container sidewall. Such properties increased the rate of water loss compared with more impermeable bioplastic, solid rice hull, and plastic containers. This higher rate of water loss resulted in most of the biocontainers having a shorter irrigation interval and a higher water requirement than traditional plastic containers. Placing permeable biocontainers in plastic shuttle trays reduced water loss through the container walls. However, irrigation demand for these containers was still generally higher than that of the plastic control containers.

Full access

Kent E. Cushman, William B. Evans, David M. Ingram, Patrick D. Gerard, R. Allen Straw, Craig H. Canaday, Jim E. Wyatt, and Michael M. Kenty

Small- and large-scale farmers must often decide when to begin application of fungicides, either before the onset of disease as a preventative treatment or after disease becomes evident in the field. Growers also must decide about products that claim to enhance fungicide efficacy when added to the spray mixture. A study was conducted during the summer of 2002 to investigate control of foliar diseases of vine crops (Cucurbita spp.) with low-input (LI) or high-input (HI) management approaches and six fungicide/spray combinations at four locations in southeastern United States. Fungicide applications began for LI when leaf disease first became evident and for HI about 20 days after seeding. Both approaches continued applications at 7- to 10-day intervals until harvest. Spray treatments consisted of a water-only control or one of six combinations of azoxystrobin/chlorothalonil alone or in combination with potassium bicarbonate, foliar phosphite (0N–12.2P–21.6K), or foliar nitrogen (25N–0P–0K). Azoxystrobin was applied in rotation with chlorothalonil for all treatments except the control. Seeds of ‘Lil’ Goblin’ pumpkin (Cucurbita pepo) were planted July to August and fruit harvested October to November, depending on location. Plants were rated twice for powdery mildew (Sphaerotheca fuliginea and Erysiphe cichoracearum) and downy mildew (Pseudoperonospora cubensis). HI did not significantly increase yield compared with LI. All fungicide treatments significantly increased yield and reduced foliar diseases compared with the water-only control. The simplest of treatments, the azoxystrobin/chlorothalonil rotation without any other chemicals, can be recommended for general use where strobilurin resistance has not been documented.