Search Results

You are looking at 31 - 40 of 40 items for

  • Author or Editor: James E. Simon x
  • All content x
Clear All Modify Search
Free access

Denys J. Charles, Amots Hetzroni, and James E. Simon

Recent developments in electronic odor-sensing technology has opened the opportunity for non-destructive, rapid, and objective assessment of food quality. We have developed an electronic sensor (electronic sniffer) that measures aromatic volatiles that are naturally emitted by fruits and fruit products. The ability of our sniffer to detect contamination in fruit juice was tested using tomato juice as a model system. Tomato juice was extracted from cultivar Rutgers and divided into eight glass jars of 300 g juice each. The jars were divided into two treatments: the control jars contained tomato juice mixed with 0.15% sorbic acid to suppress microbial growth, and the experimental jars contained only tomato juice. All the jars were placed open, on a counter top in the laboratory for 8 days. The juice was tested daily with the electronic sniffer and for pH. The total volatiles in the headspace of the juice was extracted on alternating days via dynamic headspace method using charcoal traps, analyzed by gas chromatography, and confirmed by GC/mass spectometry. The results indicate that the sniffer is able to detect differences between the two treatments 4 days after the tomato juice was exposed to ambient atmosphere. The electronic sniffer output for the control juice showed a monotonous decline, while the output for the experimental juice exhibited a sharp incline after day four. This sensor output correlated well with the total volatiles.

Free access

Amots Hetzroni, Denys J. Charles, Jules Janick, and James E. Simon

A prototype of a nondestructive electronic sensory system (electronic sniffer) that responds to volatile gases emitted by fruit during ripening was developed. The electronic sniffer is based upon four semiconductor gas sensors designed to react with a range of reductive gases, including aromatic volatiles. In 1994, we examined the potential of using the electronic sniffer as a tool to nondestructively determine ripeness in `Golden Delicious' and `Goldrush' apples. Fruit were harvested weekly from 19 Sept. to 17 Oct. (`Golden Delicious') and 27 Sept. to 18 Nov. (`Goldrush'). Each week, apples of each cultivar were evaluated individually for skin color, weight size, and headspace volatiles. Each fruit was then evaluated by the electronic sniffer, and headspace ethylene was sampled from air within the testing box. Individual fruits were then evaluated for total soluble solids, firmness, pH, total acidity, and starch index value. The electronic sniffer was able to distinguish and accurately classify the apples into three ripeness stages (immature, ripe, and over-ripe). Improved results were obtained when multiple gas sensors were used rather than a single gas sensor.

Free access

Richard G. Snyder, James E. Simon, Richard A. Reinert, Michael Simini, and Gerald E. Wilcox

Watermelon, Citrullus lanatus (Thunb.) Matsum & Nakai cv. Sugar Baby, were grown in the field as a fall crop in open-top chambers (OTC) in southwestern Indiana with either charcoal-filtered (CF) or nonfiltered (NF) air. Ozone and sulfur dioxide were continuously monitored in OTC and ambient air. There was a significant decrease in marketable yield by weight (19.9%, P = 0.05), percentage of marketable fruit by number (20.8%, P = 0.10), and total yield by weight (21.5%, P = 0.05) from plants grown in the NF air treatment compared with those grown in CF air. Ozone-induced foliar injury was significantly greater on plants grown under NF conditions. Ambient concentrations of 03 in southwestern Indiana caused foliar injury (P = 0.10) and significant yield loss to a fall crop of watermelons.

Free access

Robert M. Pyne, Adolfina R. Koroch, Christian A. Wyenandt, and James E. Simon

Sweet basil (Ocimum basilicum) is one of the most economically important culinary herbs in the world, yet global production has become increasingly challenging due to the destructive disease downy mildew (Peronospora belbahrii). Although multiple sources of resistance have been identified, there are no resistant sweet basil cultivars with a commercially acceptable chemotype and phenotype available. The commercial basil cultivar Mrihani (MRI) was identified as resistant and crossed with a Rutgers University susceptible sweet basil inbred line (SB22) to generate a full-sibling family. To determine the mode of inheritance for resistance to downy mildew in basil, six related generations of the MRI × SB22 family were evaluated using a disease severity index (DSI) at northern and southern New Jersey locations over 2 years. All siblings in the F1 and BC1P2 generations were resistant (0.33 > DSI) providing strong evidence that inheritance of resistance from MRI was conferred by dominant alleles. Segregation ratios in the F2 and backcross to the susceptible parent (BCP1) generations demonstrated chi-square goodness of fit to the two-gene complementary (F2: P = 0.11, BC1P1: P = 0.04) and recessive epistatic (F2: P = 0.03, BC1P1: P = 0.63) models. Further analyses of gene effects using a weighted six-parameter scaling test provided evidence that nonallelic additive × additive and additive × dominant gene effects were highly significant (P < 0.001) and resistance reducing. This is the first report of heritable genetic resistance that can be introduced to sweet basil without the issue of sterility barriers. Plant breeding strategies using the MRI × SB22 family should exploit dominant gene action and remove recessive, resistance-reducing alleles from the population.

Free access

David R. Byrnes, Fekadu F. Dinssa, Stephen C. Weller, and James E. Simon

Vegetable amaranth (Amaranthus sp.), a leafy vegetable crop consumed around the world, is actively promoted as a source of essential micronutrients to at-risk populations. Such promotion makes micronutrient content essential to the underlying value of this crop. However, the extent to which micronutrient content varies by effect of genotype is not clear, leaving breeders uninformed on how to prioritize micronutrient contents as the criteria for selection among other performance parameters. A total of 32 entries across seven Amaranthus species were field-grown and analyzed for Fe, Mg, Ca, Zn, yield, height, and canopy spread comprising 20 entries at New Jersey in 2013; 12 entries at Arusha, Tanzania, in 2014; and 20 entries at New Jersey in 2015. The genotype effect was significant in all trials for Fe, Mg, Ca, Zn, total yield, marketable yield, height, and canopy spread. The Fe content range was above and below the breeding target of 4.2 mg/100 g Fe in all environments except for New Jersey 2015, where all entries were found to accumulate in levels below the target. All entries in each of the environments contained levels of Ca and Mg above breeding targets, 300 mg/100 g Ca and 90 mg/100 g Mg. None of the entries in any environment met the Zn breeding target of 4.5 mg/100 g Zn.

Free access

Kathryn Homa, William P. Barney, Daniel L. Ward, Christian A. Wyenandt, and James E. Simon

Sweet basil (Ocimum basilicum) is the most economically important culinary herb in the United States. In 2007, a new disease, basil downy mildew (BDM), caused by the oomycete pathogen Peronospora belbahrii, was introduced into the United States and has since caused significant losses in commercial basil production. Although no commercial sweet basils available are resistant to P. belbahrii, other species of Ocimum have exhibited potential tolerance, resistance, or both. The objectives of this work were to determine if leaf morphological characteristics including stomata density and leaf curvature correlated with infection of plants by P. belbahrii, and thus could be used as selected characters in plant breeding. In 2011, 20 Ocimum cultivars including sweet (O. basilicum), cinnamon (O. basilicum), clove (O. basilicum), citrus (Ocimum ×africanum syn. Ocimum citriodorum), spice (Ocimum americanum syn. Ocimum canum), and holy basils (Ocimum tenuiflorum syn. Ocimum sanctum) were evaluated for susceptibility to downy mildew. Sweet basils were determined to be the most susceptible; cinnamon, clove, and Thai types were moderately susceptible; and citrus, spice, and holy types were least susceptible to downy mildew. Using those same 20 Ocimum species and cultivars, stomata length and density and leaf curvature were measured and correlated with downy mildew incidence and severity. In general, basil species with higher stomatal densities had higher downy mildew incidence and severity. High stomatal densities were mainly found in the sweet, cinnamon, and clove basils. Citrus and spice species with longer stomatal lengths generally exhibited lower downy mildew incidence. Holy basil, the least susceptible of all Ocimum sp. to P. belbahrii evaluated in this study, had the greatest stomatal density and shortest stomatal length. Some sweet basil cultivars with the highest downy mildew incidence also had the greatest downward leaf curvature, whereas other sweet basil cultivars with moderate downy mildew incidence had leaves that were nearly flat or curved upward. Holy, citrus, and spice basils with low downy mildew incidence had leaves that were nearly flat or curved upward. This study suggests that leaf curvature and stomatal density and length affect downy mildew development and sporulation. Considerations of these leaf morphological characteristics may be useful phenotypic traits in breeding for downy mildew resistance in Ocimum.

Free access

Robert M. Pyne, Adolfina R. Koroch, Christian A. Wyenandt, and James E. Simon

Sweet basil (Ocimum basilicum L.) is among the most widely popular and economically important culinary herbs. Worldwide production of sweet basil has been threatened by a newly emerging disease, downy mildew (Peronospora belbahrii). Although tolerance and resistance have been identified in other Ocimum species, the traditional sweet basils all have been reported to be highly susceptible. There is an urgent need for evaluation of basil germplasm to identify sources of host resistance to P. belbahrii within Ocimum spp. and especially among O. basilicum species. In searching for genetic resistance, we developed a rapid approach to screen and evaluate downy mildew response at the cotyledon and true leaf growth stages under controlled environmental conditions. To confirm the reliability and reproducibility of this screening method, an experiment was conducted in which three basil species (Ocimum basilicum, sensitive; O. xcitriodorum, tolerant; and O. americanum, resistant to basil downy mildew) were evaluated for response to downy mildew inoculations at three growth stages. Disease incidence (DI) at the cotyledon growth stage was equal to or greater than true leaf growth stages for all species indicating that cotyledon response to downy mildew inoculations is a viable marker for predicting true leaf stage resistance. This approach was then used to screen 36 USDA-NPGS O. basilicum accessions at cotyledon and first true leaf growth stages to identify promising downy mildew-resistant breeding lines. Thirty accessions were susceptible at both growth stages (DI = 1.0). Four accessions exhibited little or no sporulation at either growth stage (DI less than 0.06), three of which showed other symptoms including chlorosis and necrosis. One accession, PI 652053, demonstrated no signs or symptoms but differed greatly from other accessions in regard to leaf morphology and habit. Results show that a resistant, mature plant can be identified at the cotyledon growth stage, providing a robust, low-input approach to identify promising downy mildew-resistant breeding material. Field evaluations of basils under high downy mildew pressure confirmed the applicability of this new screening approach to identify resistance to basil downy mildew.

Free access

William Reichert, H. Chung Park, H. Rodolfo Juliani, and James E. Simon

Free access

Christian A. Wyenandt, James E. Simon, Margaret T. McGrath, and Daniel L. Ward

Downy mildew, caused by Peronospora belbahrii, is a new disease of basil (Ocimum spp.) in the United States. In 2009, different basil species, cultivars, and advanced breeding lines of sweet basil (30 in total) were evaluated for susceptibility to basil downy mildew in field trials in southern and northern New Jersey. Popular commercial sweet basil cultivars such as Martina, Nufar, and Poppy Joe were among the most susceptible to downy mildew. Symptoms and sporulation of P. belhahrii on Ocimum ×citriodorum and O. americanum cultivars were present but far less than on most O. basilicum cultivars evaluated. The cultivars Spice, Blue Spice, and Blue Spice Fil were the least susceptible to basil downy mildew with no visible symptoms. Similar results were observed in both field trials. This is the first report of potential resistance in Ocimum spp. to basil downy mildew. Observations from this study show that the development of resistant cultivars may be possible. Selection criteria such as foliar morphology, plant architecture as well as the presence of secondary metabolites are being examined as potential traits for developing downy mildew resistant basil cultivars.

Full access

Christian A. Wyenandt, Lisa R. Maimone, Kathryn Homa, Angela M. Madeiras, Robert L. Wick, and James E. Simon

Different basils (Ocimum sp.) and cultivars (28 in 2009 and 32 in 2010) were evaluated for susceptibility to basil downy mildew (Peronospora belbahrii) at the Rutgers Agricultural Research and Extension Center near Bridgeton in southern New Jersey. At the end of each growing season, seed was collected from individual plants and stored for potential downy mildew pathogen detection using real-time polymerase chain reaction (PCR) analysis. Most of the basil cultivars and breeding lines were showing symptoms of basil downy mildew infection at the time of seed collection before the first frost near the end of the production season. Symptoms of basil downy mildew were present on 25 of the 28 (89%) basil lines evaluated in 2009 and 26 of 32 (81%) basil lines tested in 2010 at the time of seed harvest, with sporulation evident on the abaxial surface of infected leaves. Real-time PCR analysis of seed collected from various infected plants detected P. belbahrii on seed of 14 of 25 (56%) basil lines tested in 2009 and 8 of 32 (25%) tested in 2010. Importantly, P. belbahrii was not only detected on seed of sweet basil (Ocimum basilicum) phenotypes but also on seed of ‘Spice’ basil (Ocimum americanum) in 2009 and ‘Sweet Dani Lemon Basil’ basil (Ocimum citriodorum), ‘Holy Red and Green’ basil [Ocimum tenuiflorum (form. sanctum)], ‘Lime’ basil (O. americanum), and again on ‘Spice’ basil in 2010 where no symptoms (i.e., no chlorosis or sporulation) were present on the leaves when seed were collected. This work demonstrates that basil seed, regardless of basil species and whether symptoms are visible on foliage of the basil plant or the plant is immune or resistant to downy mildew, can test positive for the presence of P. belbahrii using a real-time PCR assay following exposure of plants to the pathogen during the natural development of downy mildew under field conditions.