Search Results

You are looking at 31 - 40 of 46 items for

  • Author or Editor: David R. Bryla x
  • All content x
Clear All Modify Search
Free access

Khalid F. Almutairi, Rui M.A. Machado, David R. Bryla, and Bernadine C. Strik

Northern highbush blueberry (Vaccinium corymbosum L.) is adapted to acidic soil conditions and often grows poorly when soil pH is greater than 5.5. When soil pH is high, growers will usually mix prilled elemental sulfur (So) into the soil before planting (converted to sulfuric acid by soil bacteria) and, if needed, inject acid into the irrigation water after planting. These practices are effective but often expensive, time consuming, and, in the case of acid, potentially hazardous. Here, we examined the potential of applying micronized So by chemigation through a drip system as an alternative to reduce soil pH in a new planting of ‘Duke’ blueberry. The planting was located in western Oregon and established on raised beds mulched with sawdust in Oct. 2010. The So product was mixed with water and injected weekly for a period of ≈2 months before planting and again for period of ≈2 months in late summer of the second year after planting (to assess its value for reducing soil pH once the field was established), at a total rate of 0, 50, 100, and 150 kg·ha−1 So on both occasions. Each treatment was compared with the conventional practice of incorporating prilled So into the soil before planting (two applications of 750 kg·ha−1 So each in July and Oct. 2010). Within a month of the first application of So, chemigation reduced soil pH (0–10 cm depth) from an average of 6.6 with no So to 6.1 with 50 kg·ha−1 So and 5.8 with 100 or 150 kg·ha−1 So. However, the reductions in pH were short term, and by May of the following year (2011), soil pH averaged 6.7, 6.5, 6.2, and 6.1 with each increasing rate of So chemigation, respectively. Soil pH in the conventional treatment, in comparison, averaged 6.6 a month after the first application and 6.3 by the following May. In July 2012, soil pH ranged from an average of 6.4 with no So to 6.2 with 150 kg·ha−1 So and 5.5 with prilled So. Soil pH declined to as low as 5.9 following postplanting So chemigation and, at lower depths (10–30 cm), was similar between the treatment chemigated with 150 kg·ha−1 So and the conventional treatment. None of the treatments had any effect on winter pruning weight in year 1 or on yield, berry weight, or total dry weight of the plants in year 2. Concentration of P, K, Ca, Mg, S, and Mn in the leaves, on the other hand, was lower with So chemigation than with prilled So during the first year after planting, whereas concentration of N, P, and S in the leaves were lower with So chemigation during the second year. The findings indicate that So chemigation can be used to quickly reduce soil pH after planting and therefore may be a useful practice to correct high pH problems in established northern highbush blueberry fields; however, it was less effective and more time consuming than applying prilled So before planting.

Free access

Patrick H. Kingston, Carolyn F. Scagel, David R. Bryla, and Bernadine Strik

The purpose of the present study was to investigate the suitability of different soilless substrates for container production of highbush blueberry (Vaccinium sp.). Young plants of ‘Snowchaser’ blueberry were grown in 4.4-L pots filled with media containing 10% perlite and varying proportions of sphagnum moss, coconut (Cocos nucifera L.) coir, and douglas fir [Pseudotsuga menziesii Mirb. (Franco)] bark, as well as a commercially available mix of peatmoss, perlite, and other ingredients for comparison. Total plant dry weight (DW) was similar among the treatments at 72 days after transplanting, but at 128 days, total DW was nearly twice as much in the commercial mix and in media with ≥60% peat or coir than in media with ≥60% bark. Inadequate irrigation likely played a role in poor plant growth in bark. Bark had lower porosity and water holding capacity than peat, coir, or the commercial mix and, therefore, dried quickly between irrigations. Bark also reduced plant uptake efficiency of a number of nutrients, including N, P, K, S, Ca, Mg, Mn, B, Cu, and Zn. Uptake efficiency of P, K, and Mg also differed between plants grown in peat and coir, which in most cases was a function of the initial concentration of nutrients in the media. Before planting, peat had the highest concentration of Mg and Fe among the media, whereas coir had the highest concentration of P and K. Leachate pH was initially lowest with peat and highest with coir but was similar among each of the media treatments by the end of the study. Electrical conductivity (EC) of leachate never exceeded 0.84 dS·m−1 in any treatment. Overall, peat and coir appear to be good substrates for container production of highbush blueberry. Bark, on the other hand, was less suitable, particularly when it exceeded 30% of the total media composition.

Free access

Handell Larco, Bernadine C. Strik, David R. Bryla, and Dan M. Sullivan

A systems trial was established in Oct. 2006 to evaluate management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The practices included: flat and raised planting beds; feather meal and fish emulsion fertilizer each applied at rates of 29 and 57 kg·ha−1 nitrogen (N); sawdust mulch, compost topped with sawdust mulch (compost + sawdust), or weed mat; and two cultivars, Duke and Liberty. Each treatment was irrigated by drip and weeds were controlled as needed. The planting was certified organic in 2008. Bed type affected most leaf nutrients measured in one or both cultivars during the first year after planting, including N, phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), boron (B), manganese (Mn), and zinc (Zn), but had less of an effect on leaf nutrients and no effect on soil pH, organic matter, or soil nutrients measured the next year. Feather meal contained 12 times more Ca and seven times more B than fish emulsion and resulted in higher levels of soil Ca and soil and leaf B in both cultivars, whereas fish emulsion contained three times more P, 100 times more K, and 60 times more copper (Cu) and resulted in higher levels of soil P, K, and Cu as well as a higher level of leaf P and K. Fish emulsion also reduced soil pH. Compost + sawdust mulch increased soil pH and organic matter and resulted in higher levels of soil nitrate-N (NO3-N), P, K, Ca, B, Cu, and Zn than sawdust alone and increased leaf K and B. Weed mat, in contrast, resulted in the lowest soil pH and increased soil ammonium-N (NH4-N). Weed mat also reduced soil Ca and Mg, but its effects on leaf nutrients were variable. Leaf Ca, Mg, and B were below levels recommended for blueberry the first year after planting when plants were fertilized with fish emulsion, whereas leaf N was low or deficient on average in the second year when plants were fertilized with feather meal. Leaf B was also low the second year in all treatments, and leaf Cu was marginally low. Leaf K, conversely, increased from the previous year and was becoming marginally high with fish emulsion. Fish emulsion, weed mat, and compost were generally the most favorable practices in terms of plant and soil nutrition. However, given the impact of each on soil pH and/or plant and soil K, further investigation is needed to determine whether these practices are sustainable over the long term for both conventional and organic production of highbush blueberry.

Free access

Handell Larco, Bernadine C. Strik, David R. Bryla, and Dan M. Sullivan

A systems trial was established in Oct. 2006 to evaluate management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The practices included: flat and raised planting beds; feather meal and fish emulsion fertilizer each applied at rates of 29 and 57 kg·ha−1 nitrogen (N); sawdust mulch, compost topped with sawdust mulch (compost + sawdust), or weed mat; and two cultivars, Duke and Liberty. Each treatment was irrigated by drip and weeds were controlled as needed. The planting was certified organic in 2008. After one growing season, allocation of biomass to the roots was greater when plants were grown on raised beds than on flat beds, mulched with organic mulch rather than a weed mat, and fertilized with the lower rate of N. Plants also allocated more biomass belowground when fertilized with feather meal than with fish emulsion. Although fish emulsion improved growth relative to feather meal in the establishment year, this was not the case the next year when feather meal was applied earlier. After two seasons, total plant dry weight (DW) was generally greater on raised beds than on flat beds, but the difference varied depending on fertilizer and the type of mulch used. Shoots and leaves accounted for 60% to 77% of total plant biomass, whereas roots accounted for 7% to 19% and fruit accounted for 4% to 18%. Plants produced 33% higher yield when grown on raised beds than on flat beds and had 36% higher yield with weed mat than with sawdust mulch. Yield was also higher when plants were fertilized with the low rate of fish emulsion than with any other fertilizer treatment in ‘Duke’ but was unaffected by fertilizer source or rate in ‘Liberty’. Although raised beds and sawdust or sawdust + compost produced the largest total plant DW, the greatest shoot growth and yield occurred when plants were mulched with weed mat or compost + sawdust on raised beds in both cultivars. The impact of these organic production practices on root development may affect the sustainability of these production systems over time, however, because plants with lower root-to-shoot ratios may be more sensitive to cultural or environmental stresses.

Free access

James W. Julian, Bernadine C. Strik, Handell O. Larco, David R. Bryla, and Dan M. Sullivan

A systems trial was established to evaluate factorial management practices for organic production of northern highbush blueberry (Vaccinium corymbosum L.). The practices included: flat and raised planting beds; feather meal and fish emulsion fertilizer applied at 29 and 57 kg·ha−1 of nitrogen (N); sawdust mulch, compost topped with sawdust mulch (compost + sawdust), or weed mat; and two cultivars, Duke and Liberty. The planting was established in Oct. 2006 and was certified organic in 2008. Weeds were managed by hand-hoeing or pulling in sawdust and weed mat-mulched plots and a combination of hand-pulling, propane-flaming, and post-emergent, targeted applications of acetic acid or lemon grass oil to any weeds present in the compost + sawdust plots depending on year. Data were recorded on input costs and returns in Year 0 (establishment year) through Year 3. Plants were harvested beginning the second year after planting. Planting costs were $741/ha higher on raised beds than on the flat, but the higher costs were more than offset by an average of 63% greater yields that improved net returns by as much as $2861/ha. Cumulative net returns after 3 years were negative and ranged from –$32,967 to –$50,352/ha when grown on raised beds and from –$34,320 to –$52,848/ha when grown on flat beds, depending on cultivar, mulch, and fertilizer rate and source. The greatest yields were obtained in plants fertilized with the low rate of fish emulsion or the high rate of feather meal, but fertilizing with fish emulsion by hand cost (materials and labor) as much as $5066/ha more than feather meal. Higher costs of establishment and pruning for ‘Liberty’ compared with ‘Duke’ were offset by higher net returns in all treatment combinations, except feather meal fertilizer with either weed mat or compost + sawdust mulch. Mulch type affected establishment costs, weed presence, and weed management costs, which included product and labor costs for application of herbicides (acetic acid and lemon grass oil) as well as labor for hand-weeding as needed, depending on the treatment. The highest yielding treatment combinations (growing on raised beds mulched with compost + sawdust and fertilized with fish emulsion) improved cumulative net returns as much as $19,333/ha over 3 years.

Free access

David R. Bryla, Bernadine C. Strik, M. Pilar Bañados, and Timothy L. Righetti

A study was done to determine the macro- and micronutrient requirements of young northern highbush blueberry plants (Vaccinium corymbosum L. ‘Bluecrop’) during the first 2 years of establishment and to examine how these requirements were affected by the amount of nitrogen (N) fertilizer applied. The plants were spaced 1.2 × 3.0 m apart and fertilized with 0, 50, or 100 kg·ha−1 of N, 35 kg·ha−1 of phosphorus (P), and 66 kg·ha−1 of potassium (K) each spring. A light fruit crop was harvested during the second year after planting. Plants were excavated and parts sampled for complete nutrient analysis at six key stages of development, from leaf budbreak after planting to fruit harvest the next year. The concentration of several nutrients in the leaves, including N, P, calcium (Ca), sulfur (S), and manganese (Mn), increased with N fertilizer application, whereas leaf boron (B) concentration decreased. In most cases, the concentration of nutrients was within or above the range considered normal for mature blueberry plants, although leaf N was below normal in plants grown without fertilizer in Year 1, and leaf B was below normal in plants fertilized with 50 or 100 kg·ha−1 N in Year 2. Plants fertilized with 50 kg·ha−1 N were largest, producing 22% to 32% more dry weight (DW) the first season and 78% to 90% more DW the second season than unfertilized plants or plants fertilized with 100 kg·ha−1 N. Most DW accumulated in new shoots, leaves, and roots in both years as well as in fruit the second year. New shoot and leaf DW was much greater each year when plants were fertilized with 50 or 100 kg·ha−1 N, whereas root DW was only greater at fruit harvest and only when 50 kg·ha−1 N was applied. Application of 50 kg·ha−1 N also increased DW of woody stems by fruit harvest, but neither 50 nor 100 kg·ha−1 N had a significant effect on crown, flower, or fruit DW. Depending on treatment, plants lost 16% to 29% of total biomass at leaf abscission, 3% to 16% when pruned in winter, and 13% to 32% at fruit harvest. The content of most nutrients in the plant followed the same patterns of accumulation and loss as plant DW. However, unlike DW, magnesium (Mg), iron (Fe), and zinc (Zn) content in new shoots and leaves was similar among N treatments the first year, and N fertilizer increased N and S content in woody stems much earlier than it increased biomass of the stems. Likewise, N, P, S, and Zn content in the crown were greater at times when N fertilizer was applied, whereas K and Ca content were sometimes lower. Overall, plants fertilized with 50 kg·ha−1 N produced the most growth and, from planting to first fruit harvest, required 34.8 kg·ha−1 N, 2.3 kg·ha−1 P, 12.5 kg·ha−1 K, 8.4 kg·ha−1 Ca, 3.8 kg·ha−1 Mg, 5.9 kg·ha−1 S, 295 g·ha−1 Fe, 40 g·ha−1 B, 23 g·ha−1 copper (Cu), 1273 g·ha−1 Mn, and 65 g·ha−1 Zn. Thus, of the total amount of fertilizer applied over 2 years, only 21% of the N, 3% of the P, and 9% of the K were used by plants during establishment.

Free access

Carolyn F. Scagel, Guihong Bi, David R. Bryla, Leslie H. Fuchigami, and Richard P. Regan

One deciduous cultivar of Rhododendron L., Gibraltar (AZ), and two evergreen cultivars, P.J.M. Compact (PJM) and English Roseum (ER), were grown in containers for 1 year to determine the effects of irrigation frequency during container production on plant performance the next spring when the plants were transplanted into the landscape. While in the containers, each cultivar was irrigated once or twice daily, using the same amount of water per day, and fertilized with complete nutrient solutions containing 0, 35, 70, or 140 mg·L−1 nitrogen (N). Three months after transplanting into the landscape, nutrient uptake, growth, and flowering were evaluated. In general, the effects of irrigation frequency in containers on performance in the landscape differed between the deciduous cultivar and the evergreen cultivars. In AZ, less frequent irrigation in containers had a pre-conditioning effect that resulted in greater vegetative growth in the landscape but less reproductive growth. In contrast, less frequent irrigation reduced vegetative growth of evergreen cultivars in the landscape and improved flowering. Different growth responses to irrigation frequency between deciduous and evergreen cultivars appeared to be related to differences in timing of nutrient uptake and mobilization. In the deciduous cultivar, less frequent irrigation increased nutrient reserves and improved the ability of the plants to absorb and use nutrients after transplanting, but in the evergreen cultivars, it generally decreased nutrient uptake after transplanting. Less frequent irrigation also altered plant attributes that are important to consumers, including developing a sparser canopy in ER and a fuller canopy in PJM, and producing more but smaller inflorescences in both cultivars. Landscape performance was related to plant nutrition in containers; however, irrigation frequency in containers disrupted relationships between nutrition and performance in all three cultivars. Our results indicate that irrigation frequency during container production of Rhododendron results in a tradeoff between vegetative and reproductive growth the next spring when the plants are in the landscape.

Free access

Oscar L. Vargas, David R. Bryla, Jerry E. Weiland, Bernadine C. Strik, and Luna Sun

The use of conventional drip and alternative micro irrigation systems were evaluated for 3 years in six newly planted cultivars (Earliblue, Duke, Draper, Bluecrop, Elliott, and Aurora) of northern highbush blueberry (Vaccinium corymbosum L.). The drip system included two lines of tubing on each side of the row with in-line drip emitters at every 0.45 m. The alternative systems included geotextile tape and microsprinklers. The geotextile tape was placed alongside the plants and dispersed water and nutrients over the entire length. Microsprinklers were installed between every other plant at a height of 1.2 m. Nitrogen was applied by fertigation at annual rates of 100 and 200 kg·ha−1 N by drip, 200 kg·ha−1 N by geotextile tape, and 280 kg·ha−1 N by microsprinklers. By the end of the first season, plant size, in terms of canopy cover, was greatest with geotextile tape, on average, and lowest with microsprinklers or drip at the lower N rate. The following year, canopy cover was similar with geotextile tape and drip at the higher N rate in each cultivar, and was lowest with microsprinklers in all but ‘Draper’. In most of the cultivars, geotextile tape and drip at the higher N rate resulted in greater leaf N concentrations than microsprinklers or drip at the lower N rate, particularly during the first year after planting. By the third year, yield averaged 3.1–9.1 t·ha−1 among the cultivars, but was similar with geotextile tape and drip at either N rate, and was only lower with microsprinklers. Overall, drip was more cost effective than geotextile tape, and fertigation with 100 kg·ha−1 N by drip was sufficient to maximize early fruit production in each cultivar. Microsprinklers were less effective by comparison and resulted in white salt deposits on the fruit.

Full access

Bernadine C. Strik, Amanda Vance, David R. Bryla, and Dan M. Sullivan

The impact of various production systems on leaf nutrient concentration and soil organic matter, pH, and nutrient status was evaluated from the first growing season (2007) through maturity (2016) in a certified organic planting of northern highbush blueberry (Vaccinium corymbosum L.). Treatments included planting method (on raised beds or flat ground), fertilizer source (granular feather meal or fish solubles) and rate (“low” and “high” rates of 29 and 57 kg·ha−1 N, respectively, during establishment, increased incrementally as the planting matured to 73 and 140 kg·ha−1 N, respectively), mulch [sawdust, yard-debris compost topped with sawdust (compost + sawdust), or black, woven polyethylene groundcover (weed mat)], and cultivar (Duke or Liberty). Mulches were replenished, as needed, and weeds were controlled throughout the study. The impacts of year, planting method, fertilizer, mulch, and cultivar on leaf and soil nutrient levels over this 10-year study were complex with many interactions among treatments. Soil pH remained within the recommended range for all treatments. Plants fertilized with fish solubles had higher leaf N, P, and K concentrations than those fertilized with feather meal, particularly at the high N rate in both cultivars. By contrast, fertilization with feather meal increased leaf Ca. Compost + sawdust added a cumulative (2007–16) total of 2274, 400, 961, and 2744 kg·ha−1 of N, P, K, and Ca, respectively, over the use of sawdust alone, and increased the concentration of P, K (as much as 90%), Ca, and Mg in the soil relative to other mulches. Soil organic matter content averaged 4.1% under compost + sawdust, 3.3% under sawdust, and 2.9% under weed mat, averaged over the last 5 years. Mulching with weed mat or compost + sawdust increased leaf K compared with sawdust in both cultivars, regardless of fertilizer treatment. Leaf Ca, on the other hand, was highest with sawdust and tended to be lowest with weed mat in both cultivars. Soil nutrient levels were not consistently correlated with leaf nutrient concentrations, other than between soil NO3-N and leaf N (5 years) and between soil and leaf K (4 years). On average, raised beds resulted in higher concentrations of N, P, K, Fe, and Al and lower concentrations of Ca, Mg, and B in the leaves than planting on flat ground. Furthermore, concentrations of N and Ca in recent fully-expanded leaves at standard sampling time was higher in young plants than in mature plants in both cultivars, whereas the opposite was found for leaf P. In ‘Duke’, yield was positively correlated with leaf Ca in 8 out of 9 years and negatively correlated with leaf K and P in 5 and 6 years, respectively. Leaf Ca and Mg were also negatively correlated with leaf K in most years for both cultivars, as was leaf N. Although leaf N concentration was higher with added compost, regardless of fertilizer source in ‘Duke’, and when fertilized with feather meal in ‘Liberty’, this was not correlated with yield. High N rates increased leaf N concentration, but did not result in greater yield. While soil and leaf tissue testing are important to help manage fertilizer programs, the lack of a consistent relationship between soil and plant nutrient status and yield was a reflection of the complicated interactions that occurred among nutrients in these organic production systems. Soil nutrient imbalances and changes in leaf nutrient concentrations associated with extended use of compost + sawdust mulch and fish solubles may lead to growth and yield problems in longer-lived plantings. In addition, the loss of organic matter under weed mat would need to be addressed in long-term plantings for sustainable production.

Free access

M. Pilar Bañados, Bernadine C. Strik, David R. Bryla, and Timothy L. Righetti

The effects of nitrogen (N) fertilizer application on plant growth, N uptake, and biomass and N allocation in highbush blueberry (Vaccinium corymbosum L. ‘Bluecrop’) were determined during the first 2 years of field establishment. Plants were either grown without N fertilizer after planting (0N) or were fertilized with 50, 100, or 150 kg·ha−1 of N (50N, 100N, 150N, respectively) per year using 15N-depleted ammonium sulfate the first year (2002) and non-labeled ammonium sulfate the second year (2003) and were destructively harvested on 11 dates from Mar. 2002 to Jan. 2004. Application of 50N produced the most growth and yield among the N fertilizer treatments, whereas application of 100N and 150N reduced total plant dry weight (DW) and relative uptake of N fertilizer and resulted in 17% to 55% plant mortality. By the end of the first growing season in Oct. 2002, plants fertilized with 50N, 100N, and 150N recovered 17%, 10%, and 3% of the total N applied, respectively. The top-to-root DW ratio was 1.2, 1.6, 2.1, and 1.5 for the 0N, 50N, 100N, and 150N treatments, respectively. By Feb. 2003, 0N plants gained 1.6 g/plant of N from soil and pre-plant N sources, whereas fertilized plants accumulated only 0.9 g/plant of N from these sources and took up an average of 1.4 g/plant of N from the fertilizer. In Year 2, total N and dry matter increased from harvest to dormancy in 0N plants but decreased in N-fertilized plants. Plants grown with 0N also allocated less biomass to leaves and fruit than fertilized plants and therefore lost less DW and N during leaf abscission, pruning, and fruit harvest. Consequently, by Jan. 2004, there was little difference in DW between 0N and 50N treatments; however, as a result of lower N concentrations, 0N plants accumulated only 3.6 g/plant (9.6 kg·ha−1) of N, whereas plants fertilized with 50N accumulated 6.4 g/plant (17.8 kg·ha−1), 20% of which came from 15N fertilizer applied in 2002. Although fertilizer N applied in 2002 was diluted by non-labeled N applications the next year, total N derived from the fertilizer (NDFF) almost doubled during the second season, before post-harvest losses brought it back to the starting point.