Search Results

You are looking at 21 - 28 of 28 items for

  • Author or Editor: R.N. Trigiano x
  • All content x
Clear All Modify Search
Free access

Anjana R. Sharma, Robert N. Trigiano, Willard T. Witte, and Otto J. Schwarz

Cultivars of flowering dogwood (Cornus florida L.) are commercially propagated by vegetative methods such as rooting cuttings or grafting. The results of these methods can be unpredictable. A reliable method of producing dogwoods through tissue culture would be very useful to rapidly produce many copies of important genotypes with horticulturally important characters such as resistance to diseases. One of the primary difficulties of propagating dogwoods (seedlings only) by axillary bud multiplication has been the low rooting efficiency of the microshoots. Various treatments were tried in order to enhance rooting. Eighty-three percent of microshoots harvested between 5 and 7 weeks and treated continuously with 4.9 micromolar IBA rooted after 4 weeks, whereas <20% of microshoots harvested before 5 weeks and after 7 weeks rooted after 4 weeks of continuous exposure to IBA. Differences were also observed in rooting potentials of microshoots that had reddish brown stems rooting at a higher frequency compared to those that had green stems. We hope to translate this method to the propagation of cultivars and potential new releases.

Free access

R.N. Trigiano, K.M. Kaveriappa, S.E. Schlarbaum, M.T. Windham, and W. Witte

DNA amplification fingerprinting (DAF) was Used to characterize both parents (different cultivars) in breeding experiments with Cornus florida. Putative hybrids were fingerprinted and true crosses identified by finding unique male parent products in amplification profiles. Both manual and honey bee mediated pollinations successfully produced hybrid seed. Axillary buds from seedlings were used to initiate proliferating shoot cultures on woody plant medium with 4.5 μm BA. Initiation and development of adventitious roots were dependent on IBA (4.1 μm), sucrose (0–2%), and agar (0.2–0.6%) concentrations. About 40–50% of the microshoots produced roots and were acclimatized to greenhouse conditions. Cultures have been maintained without loss of regeneration potential for over 2 years. Clonal material can be reentered into the breeding program or used to evaluate horticultural characteristics in different environments and locales.

Free access

R.N. Trigiano, M.H. Ament, M.T. Windham, and J.K. Moulton

Cornus kousa Hance (Korean or kousa dogwood) cultivars are increasingly used as landscape plants because they lack the disease and insect problems typically associated with the native C. florida L. (flowering dogwood). A number of red-bracted kousa dogwood cultivars are now available and several are phenotypically indistinguishable from one another. Plants of six cultivars obtained from three nurseries were characterized genetically using deoxyribonucleic acid (DNA) amplification fingerprinting (DAF) and arbitrary signatures from amplification profiles (ASAP). DAF profiles of three red-bracted cultivars—`Rosabella', `Satomi' and `Heart Throb'—were nearly identical. ASAP also failed to clearly differentiate these cultivars and indicated consistent genetic similarities. In contrast, another red-bracted cultivar `Christian Prince' and two white-bracted cultivars—`Little Beauty' and `Samaritan'—were identified and separated from all other cultivars by both DAF and ASAP techniques.

Free access

M.T. Windham, E.T. Graham, W.T. Witte, J.L. Knighten, and R.N. Trigiano

Free access

James Hill Craddock, R.J. Sauve, S.E. Schlarbaum, J. Skinner, R.N. Trigiano, M.T. Windham, and W.T. Witte

Hand pollinations and honey bees were used to cross Cornus florida cultivars in a series of experiments investigating dogwood pollination biology from a breeding viewpoint and testing the use of insects (domestic honey bees and ladybug beetles as pollinators in dogwood breeding. Experiments were conducted to study possible incompatibility between dogwood cultivars and to determine if self-compatibility and self-fertility occur in Cornus florida. Since 1993, ≈200 seedlings have been produced by hand and insect-mediated pollinations. Honey bees can be used in dogwood breeding. Trees cross pollinated by ladybeetles had lower fruit set than trees cross pollinated by honey bees. Greenhouse forcing to accelerate anthesis and cold storage to delay the onset of bloom of container-grown trees can extend the dogwood breeding season effectively.

Free access

Naomi R. Smith, Robert N. Trigiano, Mark T. Windham, Kurt H. Lamour, Ledare S. Finley, Xinwang Wang, and Timothy A. Rinehart

Flowering dogwood (Cornus florida L.) is an important tree of forests and urban landscapes in the eastern United States. Amplified fragment length polymorphism (AFLP) markers were generated from genomic DNA of 17 cultivars and lines, and four duplicate samples of selective cultivars. Specific markers were identified for all except the following two lines and cultivar: MW94-67, MW95-12, and ‘Plena’. A dichotomous cultivar identification key was constructed based on AFLP data, and specific peaks or combinations of peaks were identified for all cultivars and lines. The key was assessed with seven anonymous (unlabeled) dogwood samples, and all unknowns except one were identified using the dichotomous key. Two of the unknown samples, ‘Cherokee Chief’ and ‘Cherokee Brave’, were difficult to distinguish using the AFLP markers. Intracultivar variation, up to 36% dissimilarity, was observed between duplicate samples of the same cultivar from different trees, suggesting that some mislabeling of trees had occurred at the nursery. The cultivar-specific AFLP markers can be used in breeding applications, patent protection, and in future projects, such as mapping the C. florida genome.

Free access

Phillip A. Wadl, John A. Skinner, John R. Dunlap, Sandra M. Reed, Timothy A. Rinehart, Vincent R. Pantalone, and Robert N. Trigiano

Flowering (Cornus florida L.) and kousa (C. kousa Hance) dogwoods are ornamental trees valued for their four-season appeal, but also for their importance to retail and wholesale nurseries. The popularity of kousa dogwood has increased in recent years as a result of its resistance to dogwood anthracnose and powdery mildew as compared with flowering dogwood, which is typically susceptible to those diseases. This range of resistance allows the development of intra- and interspecific cultivars with multiple disease resistance or a combination of disease resistance and specific ornamental traits. Breeding requires controlled crosses that are usually done manually, which is a labor-intensive process. Cornus florida and C. kousa have generally been found to be self-incompatible allowing for the breeding process to be made more efficient by not having to emasculate flowers. We have capitalized on the natural ability of honeybees and the self-incompatible nature of dogwood to perform self- and crosspollinations of flowering and kousa dogwood. Self-pollinations were conducted in 2006 and 2007 with C. florida ‘Appalachian Spring’ and ‘Cherokee Brave’ and with C. kousa ‘Blue Shadow’ and Galilean®. The flowering dogwood self-pollinations resulted in no seed production, whereas the kousa dogwood self-pollinations resulted in low seed production, indicating self-incompatibility. Intra- and interspecific crosses of flowering and kousa dogwood cultivars and breeding lines were conducted in 2006 to 2008. Honeybees were effective in facilitating seed production for all intraspecific crosses conducted. Seedling phenotypes of putative intra- and interspecific hybrids are similar and practically indistinguishable, so dogwood-specific simple sequence repeats were used to verify a sample of the putative hybrids. The results demonstrated that honeybees were effective in performing controlled pollinations and that honeybee-mediated pollinations provide an alternative to time-consuming hand pollinations for flowering and kousa dogwood.

Free access

Phillip A. Wadl, Xinwang Wang, John K. Moulton, Stan C. Hokanson, John A. Skinner, Timothy A. Rinehart, Sandra M. Reed, Vincent R. Pantalone, and Robert N. Trigiano

Cross-species transferability of simple sequence repeats (SSRs) is common and allows SSRs isolated from one species to be applied to closely related species, increasing the use of previously isolated SSRs. The genus Cornus consists of 58 species that are ecologically and economically important. SSRs have previously been isolated from C. florida and C. kousa. In this study, 36 SSRs were tested on taxa from 18 Cornus species and hybrids for cross-species transferability and genetic diversity was calculated for each locus using polymorphism information content (PIC). Cross-species transferability of SSR loci was higher in more closely related species and PIC values were high. Evidence was found for conserved primer sites as determined by the amplification of SSR loci in the taxa examined. Polymerase chain reaction products were cloned and sequenced for three SSR loci (CF48, CF59, and CF124) and all individuals sequenced contained the appropriate repeat. Phylogenetic relationships of 14 Cornus species were inferred using nucleotide sequences of SSR locus CF48. The most parsimonious tree resulting from this analysis was in concordance with phylogenies based on matK and internal transcribed spacer sequences. The SSR loci tested in this study will be useful in future breeding, population, and genetic studies within Cornus.