Search Results

You are looking at 21 - 30 of 40 items for

  • Author or Editor: L.E. William x
  • All content x
Clear All Modify Search
Free access

Christian M. Baldwin, Haibo Liu, Lambert B. McCarty, William L. Bauerle, and Joe E. Toler

Studies on bermudagrasses (Cynodon spp.) have demonstrated variability in salinity response among species and cultivars. However, information on ultradwarf bermudagrass cultivars in relative salinity tolerance associated with trinexapac-ethyl (TE) [4-(cyclopropyl-α-hydroxy-methylene)-3,5-dioxocyclohexanecarboxylic acid ethyl ester], a cyclohexanedione type II plant growth regulator (PGR), remains unknown. Therefore, two replicated greenhouse studies were conducted to determine the salinity tolerance of two ultradwarf bermudagrass cultivars treated with TE on turfgrass quality (TQ), total root biomass, and root and shoot tissue nutrient concentration. Turfgrasses included `TifEagle' and `Champion' bermudagrass (Cynodondactylon(L.) Pers. × C. transvaalensisBurtt-Davy). Daily sodium chloride (NaCl) exposure was 0, 12.90 (8,000 ppm), 25.80 (16,000 ppm), and 38.71 dS·m–1 (24,000 ppm). Biweekly TE applications (active ingredient 0.02 kg·ha–1) were initiated 2 weeks after salinity exposure. `Champion' was more salt-tolerant than `TifEagle' based on TQ and root mass. At 12.90, 25.80, and 38.71 dS·m–1 of NaCl, nontreated (without TE) `Champion' consistently outperformed nontreated `TifEagle' with greater TQ on most rating dates. At 12.90 dS·m–1, TE treated `Champion' (8.0) had greater TQ than nontreated `TifEagle' (6.1) at week 10. Regardless of TE application, after 2 weeks of applying 25.80 dS·m–1 of NaCl, both cultivars fell below acceptable TQ (<7). When averaged across all salinity treatments, applying TE four times at 0.02 kg·a.i./ha in two week intervals enhanced root growth for both bermudagrass cultivars by 25%. Also, both cultivars decreased root mass as salinity levels increased. Non TE-treated `TifEagle' had 56% and 40% less root and shoot Na uptake compared to TE treated cultivars at 25.80 dS·m–1. In conclusion, the two bermudagrass cultivars responded differently when exposed to moderate levels of NaCl.

Free access

Jeb S. Fields, William C. Fonteno, Brian E. Jackson, Joshua L. Heitman, and James S. Owen Jr.

Pine tree substrates (PTSs) may provide growers with sustainable substrate component options. Improved processing of PTS components has provided new materials with little scientific evaluation or understanding of their hydrophysical behavior and properties. Moisture retention characteristics were developed for two PTSs and four traditional greenhouse components: sphagnum peat, coconut coir, perlite, pine bark, shredded-pine-wood (SPW), and pine-wood-chips (PWC). Mixtures of peat containing 10%, 20%, 30%, 40%, and 50% of perlite, SPW, or PWC were also characterized. Hydrophysical properties were measured, allowing for comparison of the PTS components to the more traditional substrate components (peat, coir, perlite, and pine bark). The SPW was constructed to retain water similarly to peat and pine bark, whereas the PWC was made to increase drainage like perlite. Shredded pine wood had higher total porosity and more easily available water than did PWC components. Total porosities of SPW and PWC were similar to pine bark and coir; air space and drainage were higher than peat and coir because of the lower percentage of fine particles in the PTS components. The two PTS components had a greater influence on water drainage and retention dynamics than did perlite when amended with peat as an aggregate. Water release patterns of SPW or PWC components at low tensions were lower than peat and greater than pine bark; drainage was similar to perlite at higher tensions. Equilibrium capacity variable models predicted similar physical properties (and trends) across multiple container sizes for peat mixes amended with perlite, SPW, or PWC. The impact of PWC on drainage and aeration was similar to perlite in all containers, but these effects were greater in smaller containers.

Free access

Edward L. Proebsting, David Ophardt, William E. Howell, Gaylord I. Mink, and Kim D. Patten

Thirty-five `Bing' sweet cherry (Prunus avium L.) clones were collected, primarily from old commercial orchards in central Washington; propagated on P. mahaleb L. rootstock; and their horticultural performance was evaluated. Nine of the 35 clones were not infected with the common pollen-borne ilarviruses prunus necrotic ringspot virus and prune dwarf virus—four of the clones after decades of exposure in commercial orchards. As a group, the nine virus-free clones produced larger trees with earlier fruit maturity and less rain cracking, but softer fruit, than did the 26 infected clones. These data challenge the general assumption that the presence of one or both of these ilarviruses is always detrimental. This assumption has driven development of many valuable virus certification programs and the adoption of virus-free trees as the standard for commercial fruit growing in most states.

Free access

Stephen L. Love, Thomas Salaiz, Bahman Shafii, William J. Price, Alvin R. Mosley, and Robert E. Thornton

Ascorbic acid (vitamin C) is an essential nutrient in the human diet and potatoes are a valuable source. As a first step in breeding for potatoes (Solanum tuberosum L.) with higher levels of ascorbic acid, 75 clones from 12 North American potato-breeding programs were evaluated for concentration, and 10 of those for stability of expression. Trials were grown in Idaho, Oregon, and Washington in 1999 and 2000, tubers sampled, and ascorbic acid quantified. There were significant differences among clones and clone by environment interaction was also significant. Concentration of ascorbic acid of the clones was continuously distributed over a range of 11.5 to 29.8 mg/100 g. A subgroup of 10 clones was analyzed using an additive main effects and multiplicative interaction (AMMI) model, to diagnose interaction patterns and measure clone stability. The first two principal component axes accounted for over 80% of the variability. Bi-plot analysis showed `Ranger Russet' to be highly unstable across the environments tested. A plot of Tai's stability statistics found six of the 10 clones to be stable for ascorbic acid expression. Appropriate evaluation methods for ascorbic acid concentration must involve multi-year testing.

Free access

Donald H. Les, Michael L. Moody, Andrew S. Doran, and William E. Phillips

A synthetic F1 water-lily hybrid has been obtained for the first time using parental species originating from different subgenera of Nymphaea. The cross was accomplished using Nymphaea gigantea Hook. `Andre Leu' (subgenus Anecphya Casp.) as the maternal parent and a white-flowered variant of Nymphaea colorata Peter (subgenus Brachyceras Casp.) as the paternal parent. Morphologically, the hybrid possesses some characteristics of both parents, some intermediate features, and some unique traits. The cross was confirmed using DNA sequencing and molecular cloning techniques to compare biparentally inherited nuclear genetic markers in the parents and hybrid plant. Each parent possessed distinct alleles that were found to combine in the hybrid. Maternally inherited chloroplast DNA sequences confirmed N. gigantea as the maternal parent of the cross.

Free access

Andrew S. Doran, Donald H. Les, Michael L. Moody, and William E. Phillips

Free access

George E. Boyhan, Albert C. Purvis, William C. Hurst, Reid L. Torrance, and J. Thad Paulk

This study was undertaken to evaluate the effect of harvest date on yield and storage of short-day onions in controlled-atmosphere (CA) storage conditions. In general, harvest yields increased with later harvest dates. Yields of jumbo (>7.6 cm) onions primarily showed a quadratic or cubic response to harvest date, first increasing and then showing diminished or reduced marginal yields. Medium (>5.1 to ≤7.6 cm) onions generally showed diminished yield with later harvests as jumbos increased. Neither days from transplanting to harvest nor calculated degree days were reliable at predicting harvest date for a particular cultivar. Cultivars (early, midseason, and late maturing) performed consistently within their harvest class compared to other cultivars for a specific year, but could not be used to accurately predict a specific number of days to harvest over all years. Only three of the eight statistical assessments of percent marketable onions after CA storage were significant with two showing a linear increase with later harvest date and one showing a cubic trend, first increasing, then decreasing, and finally increasing again based on harvest date.

Free access

T.E. Thompson, L.J. Grauke, William Reid, M.W. Smith, and S.R. Winter

Free access

Gary L. McDaniel, William E. Klingeman, Willard T. Witte, and Phillip C. Flanagan

One-half (18 g·ha-1 a.i.) and three-fourths (27 g·ha-1 a.i.) rates of halosulfuron (Manage®, MON 12051) were combined with adjuvants and evaluated for effectiveness in controlling purple nutsedge (Cyperus rotundus L.) and for phytotoxic responses exhibited by two kinds of container-grown ornamental plants. Adjuvants included X-77®, Scoil®, Sun-It II®, Action “99”®, and Agri-Dex®. By 8 weeks after treatment (WAT), halosulfuron combined with X-77®, Agri-Dex®, or Action “99”® at the lower halosulfuron rate provided <90% purple nutsedge suppression. In contrast, Sun-It II® provided 100% control when combined with the higher halosulfuron rate. Nutsedge control persisted into the following growing season and halosulfuron combined with either Scoil® or Sun-It II® provided >97% suppression of nutsedge tuber production. Growth of liriope [Liriope muscari (Decne.) Bailey `Big Blue'] was not inhibited by Scoil® or Sun-It II® adjuvants in combination with the low rate of halosulfuron. However, regardless of the rate of halosulfuron or adjuvant used, initial foliar chlorosis was observed in both daylily (Hemerocallis sp. L. `Stella d'Oro') and liriope. All liriope receiving halosulfuron with X-77®, Scoil®, or Sun-It II® adjuvants recovered normal foliage by 8 WAT. By contrast, at 8 WAT some daylily still maintained a degree of foliar discoloration. In addition to chlorosis, all treatments reduced flower number in daylilies. The number of flower scapes produced by liriope was not affected by halosulfuron when in combination with either Sun-It II® or Scoil®. The high rate of halosulfuron combined with X-77® or Action “99”® improved control of purple nutsedge. However, this rate inhibited growth of both species, daylily flower numbers, and scape numbers of liriope, regardless of adjuvant. Chemical names used: halosulfuron (Manage®, MON 12051, methyl 5-{[(4,6-dimethyl-2-pyrimidinyl) amino] carbonyl-aminosulfonyl}-3-chloro-1-methyl-1-H-pyrozole-4-carboxylate); proprietary blends of 100% methylated seed oil (Scoil® and Sun-It II®); proprietary blend of 99% polyalkyleneoxide modified heptamethyl trisiloxane and nonionic surfactants (Action “99”®); alkylarylpolyoxyethylene, alkylpolyoxyethelene, fatty acids, glycols, dimethylpolysiloxane, and isopropanol (X-77®); proprietary blend of 83% paraffin-based petroleum oil, with 17% polyoxyethylate polyol fatty acid ester and polyol fatty ester as nonionic surfactants (Agri-Dex®)

Free access

C.H. Crisosto, W.A. Retzlaff, L.E. William, T.M. DeJong, and J.P. Zoffoli

We investigated the effects of three seasonal atmospheric ozone (0,) concentrations on fruit quality, internal breakdown, weight loss, cuticle structure, and ripening characteristics of plum fruit from 3-year-old `Casselman' trees in the 1991 season. Trees were exposed to 12-hour daily mean O3 concentrations of 0.034 [charcoal-filtered air (CFA)], 0.050 [ambient air (AA)], or 0.094 [ambient plus O3 (AA+O)] μl·liter-1 from bloom to leaf-fall (1 Apr. to31 Oct. 1991). Fruit quality and internal breakdown incidence measured at harvest and after 2, 4, and 6 weeks of storage at 0C were not affected by any of the O3 treatments. Following an ethylene (C2H4) preconditioning treatment, the rate of fruit softening, C2H4 production, and CO, evolution was higher for plums harvested from the AA + O than from those grown in CFA. Weight loss of fruit from the AA + O exceeded that of fruit from CFA and AA. Anatomical studies of mature plums indicated differences in wax deposition and cuticle thickness between fruit grown in AA + O, AA, and CFA. Differences in gas permeability, therefore, may explain the difference in the ripening pattern of `Casselman' plum fruit grown in high atmospheric O3 partial pressures.