Search Results

You are looking at 21 - 30 of 76 items for

  • Author or Editor: John M. Dole x
  • All content x
Clear All Modify Search
Free access

Janet C. Cole and John M. Dole

A 3 pine bark: 1 peatmoss: 1 sand (by volume) medium was amended with 7.7 g P as superphosphate, triple superphosphate, ammonium phosphate, or controlled-release ammonium phosphate per 1000 g medium (3.8 liters). The medium was then leached with 250, 350, or 450 ml distilled, deionized water daily for 25 days. Phosphorus leaching curves were then generated for each fertilizer. A subsequent study determined the effect of these four P fertilizers on growth of marigold seedlings in the greenhouse. Superphosphate, triple superphosphate, and ammonium phosphate rapidly leached from the medium, while the controlled-release ammonium phosphate was retained for a longer time. Marigold growth was not affected by fertilizer type; however, marigolds grown in P-amended media were larger than those grown without P. These studies indicate that amending container growing medium with superphosphate or triple superphosphate prior to planting may not be cost-effective.

Free access

John M. Dole and Michael A. Schnelle

Floricultural producers, cut flower wholesalers, mass market retailers and general retailers were surveyed to compare and contrast the industry in terms of attitudes and problems. Questions involved general business information, as well as specific crops. Overall, all four segments of the industry were neutral to negative on potted flowering plants, but were positive to neutral on bedding and foliage plants. However, producers were slightly negative concerning the postharvest life of bedding plants. While cut flower wholesalers had a positive attitude concerning cut flowers, retailers and mass marketers tended to be neutral to negative. In particular, retailers and mass marketers felt cut flowers were too expensive and too short lived. Floral preservatives were used by 81.6% of general retailers, while only 18.8% of mass market retailers used preservatives. All cut flower wholesalers used preservatives. Capital availability and market demand were the factors most limiting to expansion for producers and general retailers; mass market firms listed competition as their most limiting factor. Results from other questions will also be provided.

Free access

John M. Dole and Harold F. Wilkins

Vegetative, single-stem poinsettia plants (Euphorbia pulcherrima Willd. `Gutbier V-14 Glory') were allowed to develop 10, 15, or 20 nodes (nodal groups). Within each nodal group, blades from the same node position were removed, combined into one sample per node, and analyzed for nutrient content. Nutrient concentrations were found to be distributed within the plant in one of three patterns: 1) N, P, and K concentrations were higher in upper than in lower leaves; 2) Ca, Mg, Fe, Mn, and B concentrations were higher in lower than in upper leaves; and 3) Cu and Zn concentrations were higher in upper and lower leaves than in middle leaves. When 10, 15, and 20 noded groups were compared, the distributional patterns were similar, but actual nutrient concentrations between groups differed. Leaf P, Ca, Mg, Fe, Mn, Zn, and B concentrations increased over time. However, concentrations of N, K, and Cu were highest in 43-day-old leaves and lowest in 19-day-old leaves for N and Cu and lowest in 67-day-old leaves for K.

Free access

Todd J. Cavins and John M. Dole

Hyacinthoides hispanica (Mill.) Roth., Hyacinthus orientalis L. `Gypsy Queen', Narcissus pseudonarcissus L. `Music Hall', N. pseudonarcissus `Tahiti', Tulipa gesneriana L. `Couleur Cardinal', and T. gesneriana `White Emperor' bulbs were given 0 or 6 weeks of preplant 5 °C cold treatment and planted 15, 30, or 45 cm deep into raised ground beds under 0%, 30%, or 60% shade. Plant growth was monitored for 2 years after planting. Preplant 5 °C cold pretreatment reduced percentage of Tulipa `White Emperor' bulbs that flowered but did not affect the percentage of bulbs that flowered for the other species. Cold pretreatment also delayed anthesis in one or both years for all cultivars except Hyacinthoides hispanica. The greatest percentage of bulbs flowered when planted 15 cm deep. The 45-cm planting depth reduced bulb flowering percentage or eliminated plant emergence. Increasing planting depth increased days to anthesis for all cultivars in both years. Increasing shade increased stem lengths in year 2 for all cultivars except Hyacinthoides hispanica, but did not influence percentage of bulbs flowering for any cultivars. For all cultivars perennialization was low regardless of treatment as less than 30% of bulbs survived to the 2nd year.

Free access

John M. Dole and Harold F. Wilkins

Poinsettia (Euphorbia pulcherrima Wind. ex. Klotzsch) cultivars were divided into free-branching and restricted-branching groups. Auto and reciprocal grafts were made among three free-branching cultivars, Annette Hegg Brilliant Diamond (BD), Annette Hegg Topwhite (TW), and Annette Hegg Hot Pink (HP), and two restricted-branching cultivars, Eckespoint C-1 Red (CR) and Eckespoint C-1 White (CW). when CR scions were grafted onto BD stocks, vegetative characteristics of branching pattern and leaf morphology of CR plants were altered when compared to the control graft combination CR/CR (scion/stock). Branching pattern was determined by pinching the scion above the 12th node and measuring axillary shoot length, diameter, and node number 30 days later. CR scions grafted onto BD stocks produced a plant very similar to BD plants when axillary shoot length and node number were compared. However, axillary shoot diameter and leaf morphology were intermediate between CR and BD plants. Changes were retained after two generations of serial vegetative propagation and are considered permanent. The reproductive characteristics of anthesis date, bract color, and cyathia cluster diameter were not influenced by the stock. CR/BD plants produced twice as many axillary inflorescences as BD/BD or BD/CR plants, while CR/CR plants did not produce any. All of the free-branching cultivars were able to alter the vegetative characteristics of all of the restricted-branching cultivars.

Free access

Janet C. Cole and John M. Dole

These studies were conducted to determine the effect of 1) temperature on P leaching from a soilless medium amended with various P fertilizers, 2) water application volume on P leaching, and 3) various fertilizers on P leaching during production and growth of marigolds (Tagetes erecta L. `Hero Flame'). Increasing temperature linearly decreased leaching fraction; however, total P leached from the single (SSP) or triple (TSP) superphosphate-amended medium did not differ regardless of temperature. Despite a smaller leaching fraction at higher temperatures and no change in the total P leached, P was probably leached more readily at higher temperatures. More P was leached from the medium amended with uncoated monoammonium phosphate (UCP) than from the medium containing polymer-coated monoammonium phosphate (CTP) at all temperatures, and more P was leached from UCP-amended medium at lower temperatures than at higher temperatures. More P was leached from TSP- than from SSP-amended medium and from UCP- than from CTP-amended medium regardless of the water volume applied, but leachate P content increased linearly as water application volume increased for all fertilizers tested. Plant dry weights did not differ regardless of P source. Leachate electrical conductivity (EC) was lower with TSP than with SSP. Leachate EC was also lower with CTP than with UCP. A higher percentage of P from controlled release fertilizer was taken up by plants rather than being leached from the medium compared to P from uncoated fertilizers.

Free access

Todd J. Cavins and John M. Dole

Narcissus L. `Music Hall', N. `Tahiti', Tulipa L. `Couleur Cardinal', and T. `White Emperor' bulbs were precooled at 5 °C for 0 or 5 weeks and planted 15, 30, or 45 cm deep (from bulb base) into raised ground beds under 0%, 30%, or 60% shade. Plant growth was monitored for two consecutive years after planting. Precooling reduced the percentage of T. `White Emperor' that flowered but did not affect flowering percentage of the other cultivars. Precooling delayed anthesis in one or both years for all cultivars. The greatest percentage of bulbs flowered when planted 15 cm deep and the 45-cm planting depth reduced flowering percentage. Increasing planting depth delayed anthesis for all cultivars. Increasing shade increased stem lengths in one or both years for all cultivars, but did not influence flowering percentage. Perennialization was low for all cultivars regardless of treatment. Cultivar differences in perennialization occurred; in year 2 up to 30% of N. `Tahiti' bulbs flowered vs. 32% for `Music Hall' and up to 30% of T. `White Emperor' bulbs flowered vs. only 22% of `Couleur Cardinal'.

Free access

John M. Dole and Harold F. Wilkins

Easter lily bulbs (Lilium longiflorum `Nellie White') were given 6 weeks of cold, placed in the greenhouse and subsequently divided into groups based on emergence date after placement in the greenhouse: 0-6, 7-13, 14-20 and 21-27 days. At emergence bulbs received 0, 1, 2 or 3 weeks of long days (LD). Late-emerging plants had fewer days to visible bud and anthesis from emergence than early-emerging plants; consequently, late-emerging plants flowered within 3-10 days of early emerging plants despite 14-21 days difference in emergence time. Late emerging plants were tallest and middle emerging plants had the highest leaf number. Increasing LD tended to decrease numbers of days from emergence to visible bud and anthesis and increase plant height. LD did not effect leaf or flower number. Interactions between LD and emergence date will be discussed. Experiment was repeated for three consecutive years.

Free access

Todd J. Cavins and John M. Dole

Campanula medium L. `Champion Blue' (CB) and `Champion Pink' (CP) and Lupinus hartwegii Lindl. `Bright Gems' (LH) were grown in 8- or 16-h initial photoperiods, transplanted when two–three, five–six, or eight–nine nodes developed and placed under 8-, 12-, or 16-h final photoperiods. Greatest flowering percentage (100%) for CB and CP occurred when plants with two–three nodes were grown in the 16-h final photoperiod. The lowest flowering percentage for CB (3.3%) and CP (15.7%) resulted from plants grown in the 8-h photoperiod continuously (initial and final). CB and CP stem lengths (49.8 cm) were longest when grown in the 8-h photoperiod continuously and shortest with the 16-h initial and 8-h final photoperiods for CB (26.5 cm) and the 16-h photoperiod continuously for CP (25.4 cm). Fewest days to anthesis, 134 days for CB and 145 days for CP, resulted from the 16-h photoperiod continuously and greatest (216 days) from the 8-h photoperiod continuously. LH plants had a high flowering percentage (99.6%) regardless of photoperiod or transplant stage. Stem lengths were longest (60.1 cm) for LH plants exposed to the 16-h photoperiod continuously and shortest (46.2 cm) when exposed to the 8-h photoperiod continuously. LH exhibited a curvilinear response for days to anthesis with the 16-h final photoperiod producing the shortest crop time (166 days) and the 12-h final photoperiod producing the longest crop time (182 days). The experiment was repeated in 1998/1999 with high intensity discharge (HID) lighting during the initial photoperiod which increased plant quality.

Free access

John M. Dole and Harold F. Wilkins

Easter lily (Lilium longiflorum Thunb. `Nellie White') bulbs were exposed to 1, 2, 3, 4, 5, or 6 weeks of cold before shoot emergence; 0, 1, 2, 3, 4, 5, or 6 weeks of long days (LD) upon shoot emergence; or a combination of cold followed by LD: 1/5 (weeks cold/weeks LD), 2/4,3/3,4/2, or 5/1. Experiments were repeated for three consecutive years. LD did not substitute equally for cold; at least 3 weeks of cold were required before LD treatments resulted in anthesis. Depending on the year, 100% of the plants flowered when treated with 3 to 6 weeks of cold alone or in combination with LD. Days to first flower anthesis from planting increased with decreasing weeks of cold in years 1 and 3, but was similar for all treatments in year 2. Decreasing weeks of cold in combination with LD, however, decreased days to anthesis in years 1 and 2, but had no effect in year 3. Regardless of LD, days from emergence to visible bud increased with decreasing weeks of cold in all years, and days to emergence from placement in the greenhouse increased with decreasing cold in years 1 and 3, but not in year 2. Increasing weeks of cold, regardless of LD, decreased leaf count, but had no effect on plant height. Flower count was unaffected by cold when combined with LD, but was significantly reduced by increasing weeks of cold.