Search Results

You are looking at 21 - 30 of 46 items for

  • Author or Editor: David R. Bryla x
  • All content x
Clear All Modify Search
Open access

Bernadine C. Strik, Amanda J. Davis, and David R. Bryla

A 2-year trial was established in Oct. 2016 in western Oregon to evaluate the effects of various in-row mulch treatments on establishment of northern highbush blueberry (Vaccinium corymbosum L. ‘Duke’). The treatments included douglas fir [Pseudotsuga menziesii (Mirb.) Franco] sawdust, black weed mat (woven polypropylene groundcover), green weed mat, and sawdust covered with black or green weed mat. For the most part, plant nutrient concentration and content were unaffected by the color of the weed mat. In both years, mulching with weed mat over sawdust reduced soil NO3-N compared with weed mat alone. The only other soil nutrient affected by mulch was K, which was highest with sawdust mulch and intermediate with black weed mat alone in year 2. There were inconsistent effects of mulch on leaf nutrient concentration during the study. In 2018, leaf N concentration was lowest with black weed mat over sawdust. There were few mulch effects on nutrient concentrations in senescent leaves in both years and in harvested fruit in year 2. Mulch had greater effect on nutrient concentration in dormant plant parts after the second growing season than after the first, with the addition of sawdust under weed mat leading to significant differences for many nutrients in various plant parts compared with weed mat alone. Total uptake of N ranged from 12 kg·ha−1 (black weed mat) to 17 kg·ha−1 (black weed mat over sawdust) in year 1 and averaged 33 kg·ha−1 in year 2, with no effect of mulch. Fertilizer use efficiency for N was 8% to 12% in year 1 and 42% in year 2. Uptake of other nutrients was unaffected by mulch and, depending on the year, ranged from 1.3 to 4.3 kg·ha−1 P, 4.0 to 8.0 kg·ha−1 K, 2.1 to 4.9 kg·ha−1 Ca, and 1.0 to 1.5 kg·ha−1 Mg. Each of these other nutrients was derived from the soil or decomposing roots.

Open access

Khalid F. Almutairi, David R. Bryla, and Bernadine C. Strik

In many regions, water limitations are increasing because of frequent and persistent droughts and competition for water resources. As a result, growers in these regions, including those producing blueberries, must limit irrigation during drier years. To identify the most critical periods for irrigation, we evaluated the effects of soil water deficits during various stages of fruit development on different cultivars of northern highbush blueberry (Vaccinium corymbosum L.). The study was conducted for 2 years in western Oregon and included two early season cultivars, ‘Earliblue’ and ‘Duke’, a midseason cultivar, ‘Bluecrop’, and two late-season cultivars, ‘Elliott’ and ‘Aurora’. Volumetric soil water content and stem water potentials declined within 1 to 2 weeks with no rain or irrigation in each cultivar and were lowest during the later stages of fruit development. Water deficits reduced berry weight by 10% to 15% in ‘Earliblue’ and ‘Elliott’ when irrigation was withheld in the second year during early or late stages of fruit development and by 6% to 9% in ‘Aurora’ when irrigation was withheld in either year during the final stages of fruit development. However, water deficits only reduced yield significantly in ‘Aurora’, which produced 0.8 to 0.9 kg/plant fewer fruit per year when irrigation was withheld during fruit coloring. In many cases, water deficits also reduced fruit firmness and increased the concentration of soluble solids in the berries, but they had inconsistent effects on titratable acidity and sugar-to-acid ratios. As a rule, water deficits were most detrimental during later stages of fruit development, particularly in midseason and late-season cultivars, which ripened in July and August during the warmest and driest months of the year.

Free access

David L. Ehret, Brenda Frey, Tom Forge, Tom Helmer, and David R. Bryla

A study was conducted in the Fraser Valley of British Columbia, Canada, to determine the effects of drip configuration (one or two lines with emitters spaced every 0.3 or 0.45 m) and irrigation at moderate or heavy rates (5 or 10 L/plant) in a mature planting of ‘Duke’ highbush blueberry (Vaccinium corymbosum L.). Results were compared with those published previously from the first 4 years after planting. Although plant size increased with irrigation rate when the plants were younger, there was no added benefit of heavy irrigation on growth in the older plants. However, the plants became more sensitive to soil water deficits with age and, therefore, unlike when they were younger, had greater yields when more water was applied. Berry size and fruit firmness were little affected by irrigation in the older plants, but antioxidants, measured as oxygen radical absorbance capacity (ORAC), were higher with than without irrigation, suggesting that irrigation has the potential to improve the health benefits of blueberries. Growth, yield, and fruit quality were unaffected by drip configuration in any year. Overall, the results revealed that the response of highbush blueberry to drip irrigation changed over time and indicated that irrigation management should be adjusted as a planting matures.

Free access

David L. Ehret, Brenda Frey, Tom Forge, Tom Helmer, and David R. Bryla

A 4-year study was conducted to establish the effects of drip irrigation configuration and rate on fruit yield and quality of young highbush blueberry plants (Vaccinium corymbosum L. ‘Duke’). Plants were grown in a silt loam soil on raised beds and were non-irrigated or irrigated using either one or two lines of suspended drip tape. Each line configuration had in-line emitters spaced every 0.3 or 0.45 m for a total of four drip configurations. Water was applied by each drip configuration at two rates, a moderate rate of 5 L/plant per irrigation event, and a heavy rate of 10 L/plant. The frequency of irrigation was guided by measurements of soil matric potential. Irrigation was applied each year, and plants were cropped beginning the second year after planting. Rainfall was above normal in the first 2 years of the study, and differences in soil moisture were most evident in the last 2 years, in which soil matric potential increased with irrigation volume. Neither the number of irrigation lines nor emitter spacing had an effect on yield or fruit quality. Yield was unaffected by irrigation rate until the fourth year after planting and was only higher when 5 L/plant was applied. The yield increase was the result of differences in fruit weight during the second of two harvests and was associated with delays in fruit maturation. Irrigation affected plant mineral concentrations but leaves and berries responded differently; affected minerals tended to decrease in leaves but increase in the fruit. Many irrigation-induced changes in fruit quality were evident 1 or 2 years before changes in yield. Higher irrigation volume increased fruit size and water content but reduced fruit firmness and soluble solids. Irrigation reduced fruit water loss during storage and thereby promoted longer shelf life. Irrigation also resulted in a change in anthocyanin composition in the fruit but did not affect antioxidants or total anthocyanin content.

Free access

David R. Bryla, Thomas J. Trout, James E. Ayars, and R. Scott Johnson

A 3-year study was conducted in central California to compare the effects of furrow, microjet, surface drip, and sub surface drip irrigation on vegetative growth and early production of newly planted `Crimson Lady' peach [Prunus persica (L.) Batsch] trees. Furrow treatments were irrigated every 7, 14, or 21 days; microjet treatments were irrigated every 2-3, 7, or 14 days; and surface and subsurface drip (with one, two, or three buried laterals per row) treatments were irrigated when accumulated crop evapotranspiration reached 2.5 mm. The overall performance showed that trees irrigated by surface and subsurface drip were significantly larger, produced higher yields, and had higher water use efficiency than trees irrigated by microjets. In fact, more than twice as much water had to be applied to trees with microjets than to trees with drip systems in order to achieve the same amount of vegetative growth and yield. Yield and water use efficiency were also higher under surface and subsurface drip irrigation than under furrow irrigation, although tree size was similar among the treatments. Little difference was found between trees irrigated by surface and subsurface drip, except that trees irrigated with only one subsurface drip lateral were less vigorous, but not less productive, than trees irrigated by one surface drip lateral, or by two or three subsurface drip laterals. Within furrow and microjet treatments, irrigation frequency had little effect on tree development and performance with the exception that furrow irrigation every 3 weeks produced smaller trees than furrow irrigation every 1 or 2 weeks.

Free access

John R. Yeo, Jerry E. Weiland, Dan M. Sullivan, and David R. Bryla

Phytophthora cinnamomi Rands causes root rot of northern highbush blueberry (Vaccinium corymbosum L.), which decreases plant growth, yield, and profitability for growers. Fungicides are available to suppress the disease, but are prone to development of resistance in target pathogens and cannot be used in certified organic production systems. Alternative, nonchemical, cultural management strategies were evaluated to reduce phytophthora root rot in a field infested with P. cinnamomi. The field was planted with ‘Draper’ blueberry, which is highly susceptible to the pathogen. The soil was either amended with gypsum or not before planting, and the plants were irrigated using narrow (adjacent to plant crown) or widely spaced (20 cm on either side of the plant crown) drip lines and mulched with douglas fir sawdust or black, woven geotextile fabric (weed mat). A fungicide control treatment was also included in the study and consisted of applying two conventional fungicides, mefenoxam and fosetyl-Al, to plants irrigated with narrow drip lines and mulched with sawdust. Initially, root infection by P. cinnamomi was lower with the combination of gypsum, wide drip lines, and sawdust mulch than with any other treatment, except the fungicide control. The soil under weed mat accumulated more heat units than under sawdust and resulted in faster hyphal growth by the pathogen. However, plant growth was similar in both mulch types. The effects of drip line placement and gypsum, on the other hand, were interactive, and plants grown with a combination of wide drip lines and gypsum produced the greatest amount of biomass among the cultural treatments. Narrow drip lines negated the disease-suppressive effects of gypsum by moving zoospore-inhibiting Ca2+ away from the plant root zone, and also resulted in wetter soil near the crown of the plants, which likely promoted zoospore discharge and root infection. However, wide drip lines resulted in N deficiency symptoms during the first year after planting and, therefore, resulted in less plant growth than the fungicide control. Thus, if N is managed properly, this study suggests that concerted use of gypsum and wide drip lines can help suppress phytophthora root rot in northern highbush blueberry and increase production in field soils where the pathogen is present.

Free access

John R. Yeo, Jerry E. Weiland, Dan M. Sullivan, and David R. Bryla

Phytophthora cinnamomi Rands is a ubiquitous soilborne pathogen associated with root rot in many woody perennial plant species, including highbush blueberry (Vaccinium corymbosum). To identify genotypes with resistance to the pathogen, cultivars and advanced selections of highbush blueberry were grown in a greenhouse and either inoculated or not with propagules of P. cinnamomi. Two experiments were conducted, including one with 10 commercially established cultivars and another with seven newly released cultivars, three commercially established cultivars, and three advanced selections of highbush blueberry. Pathogen resistance was based on the shoot and root dry biomass of the inoculated plants relative to the noninoculated plants within each genotype, as well as on the percentage of root infection among the genotypes. Resistant genotypes included four commercially established cultivars, Aurora, Legacy, Liberty, and Reka, and two new cultivars, Overtime and Clockwork. When these genotypes were inoculated, average relative shoot biomass was ≥60% of that of the noninoculated plants, whereas relative root biomass was ≥40%. ‘Star’, as well as two advanced selections (an early- and a late-season type) may also have some degree of resistance, but further investigation is needed. Relative shoot biomass of the susceptible genotypes, on the other hand, ranged from 19% to 53% and relative root biomass ranged from 11% to 26%. The susceptible genotypes included ‘Bluetta’, ‘Bluecrop’, ‘Bluegold’, ‘Blue Ribbon’, ‘Cargo’, ‘Draper’, ‘Duke’, ‘Elliott’, ‘Last Call’, ‘Top Shelf’, and ‘Ventura’. These cultivars are not recommended at sites with conditions conducive to root rot, such as those with clay soils and/or poor drainage.

Free access

Emily K. Dixon, Bernadine C. Strik, Luis R. Valenzuela-Estrada, and David R. Bryla

Weed management, training time, and irrigation practices were evaluated from 2013 to 2014 in a mature field of trailing blackberry (Rubus L. subgenus Rubus Watson) established in western Oregon. The field was planted in 2010 and certified organic in 2012, before the first harvest season. Treatments included two cultivars (Marion and Black Diamond), three weed management practices [nonweeded, hand-weeded or bare soil, and weed mat (black landscape fabric)], two irrigation strategies (irrigation throughout the growing season and no postharvest irrigation), and two primocane training dates (August and February). When averaged over the other treatments, ‘Marion’ and ‘Black Diamond’ had similar yields in both years. However, the presence of weeds reduced vegetative growth and yield, especially in ‘Black Diamond’, while weed mat increased growth and yield over hand-weeded plots by 13%. Withholding irrigation after harvest reduced water use by an average of 44% each year without adversely affecting yield in either cultivar. The effects of training time were primarily seen in 2014 after a cold winter. August-trained ‘Marion’ plants had more cold damage than February-trained plants and, consequently, had fewer and shorter canes, less biomass, fewer nodes, and 1 kg/plant less yield than February-trained plants. ‘Black Diamond’ was cold hardier than ‘Marion’, but was more readily infested by raspberry crown borer (Pennisetia marginata Harris). As the planting reached maturity, yields in the best performing organic production systems (both cultivars under weed mat and ‘Marion’ that was February-trained) averaged 11 and 9 t·ha−1, for ‘Black Diamond’ and ‘Marion’ respectively, similar to what would be expected in conventional production.

Free access

David R. Bryla, Elizabeth Dickson, Robert Shenk, R. Scott Johnson, Carlos H. Crisosto, and Thomas J. Trout

A 3-year study was done to determine the effects of furrow, microspray, surface drip, and subsurface drip irrigation on production and fruit quality in mature `Crimson Lady' peach [Prunus persica (L.) Batsch] trees. Furrow and microspray irrigations were scheduled weekly or biweekly, which is common practice in central California, while surface and subsurface drip irrigations were scheduled daily. Trees were maintained at similar water potentials following irrigation by adjusting water applications as needed. Tree size and fruit number were normalized among treatments by pruning and thinning each season. Surface and subsurface drip produced the largest fruit on average and the highest marketable yields among treatments. Drip benefits appeared most related to the ability to apply frequent irrigations. Whether water was applied above or below ground, daily irrigations by drip maintained higher soil water content within the root zone and prevented cycles of water stress found between less-frequent furrow and microspray irrigations. With furrow and microsprays, midday tree water potentials reached as low as –1.4 MPa between weekly irrigations and –1.8 MPa between biweekly irrigations, which likely accounted for smaller fruit and lower yields in these treatments. To reduce water stress, more frequent irrigation is probably impractical with furrow systems but is recommended when irrigating during peak water demands by microspray.

Free access

Bernadine C. Strik, Amanda Vance, David R. Bryla, and Dan M. Sullivan

A long-term trial was established in Oct. 2006 in western Oregon to identify organic production systems for maximum yield and quality in highbush blueberry (Vaccinium corymbosum L.). The planting was transitional during the first year after planting and was certified organic during fruit production (2008–16). Treatments included planting method (on raised beds or flat ground), fertilizer source (granular feather meal or fish solubles), and rate (“low” and “high” rates of 29 and 57 kg·ha−1 N during establishment, increased incrementally as the planting matured to 73 and 140 kg·ha−1 N, respectively), mulch [sawdust, yard debris compost topped with sawdust (compost + sawdust), or black, woven polyethylene groundcover (weed mat)], and cultivar (‘Duke’ and ‘Liberty’). Mulches were replenished, as needed, and weeds were controlled throughout the study. Raised beds resulted in greater yield than flat ground during the establishment years but had less effect on yield once the plants were mature. After 9 years, cumulative yield was 22% greater on raised beds than on flat ground in ‘Liberty’ but was unaffected by planting method in ‘Duke’. Cumulative yield was also 10% greater with feather meal than with fish solubles, on average, and 4% greater with the low rate than with the high rate of fertilizer. ‘Duke’ was particularly sensitive to fertilizer source and produced 35% less yield overall with fish solubles than with feather meal. By contrast, there was relatively little effect of fertilizer source or rate on yield in ‘Liberty’. In five of 9 years, yield was 8% to 20% greater with weed mat than with sawdust or compost + sawdust. Mulch type had no effect on cumulative yield of ‘Duke’, but cumulative yield of ‘Liberty’ was 11% greater with weed mat than with sawdust or compost + sawdust. Soil temperature was warmer under weed mat than under sawdust, and plants on raised beds covered with weed mat required more irrigation than those grown on flat ground mulched with sawdust. ‘Duke’ produced heavier, larger, and firmer berries with lower total soluble solids (TSS) than ‘Liberty’. However, other treatment effects on berry quality were relatively small and inconsistent. For example, berry weight was greater on raised beds than on flat ground, on average, but only by 3% (0.06 g/berry). Plants on raised beds also produced berries with slightly lower TSS than those on flat ground (15.2% and 15.7%, respectively, in ‘Liberty’, and 13.1% and 13.3%, respectively in ‘Duke’). There was no effect of fertilizer source or rate on TSS in ‘Liberty’ (15.5% on average), whereas in ‘Duke’, TSS was highest when fertilized at the high (13.7%) or low (13.4%) rate of fish, and was lower when using feather meal (12.9% and 13.1% for low and high rate, respectively). Plants fertilized with fish produced firmer fruit than with feather meal in five of the 7 years in which the measurements were taken. Also, fertilization with the higher rate of either product increased berry firmness compared with the low rate in six of the 7 years. The impact of mulch was inconsistent through the study period. On average, ‘Duke’ berries were softest when fertilized with the low (173 g·mm−1 deflection) and high (176 g·mm−1) rates of feather meal and were the firmest with the high rate of fish (182 g·mm−1). In ‘Liberty’, the low rate of feather meal produced softer fruit (157 g·mm−1) than the other fertilizer treatments (162 g·mm−1 on average). When this study was initiated in 2006, the most common organic production system in this region was raised beds with sawdust mulch and fertilizing with a high rate of fish solubles. For this production system, yield for mature plants in our study (2014−16) was the equivalent of 8.9−12.3 t·ha−1 in ‘Duke’ and 11.8−23.7 t·ha−1 in ‘Liberty’. However, when plants were grown on raised beds with weed mat and fertilized with the high rate of feather meal, yield increased to 10.2−19.3 t·ha−1, depending on year, in ‘Duke’. By contrast, there was little effect of production system on yield of mature ‘Liberty’ plants. These yields, particularly for the best-performing treatment combination in ‘Duke’, are similar to what are observed in commercial conventional fields or organic farms using similar management practices. Our results showed that choice of organic production system can have significant impact on yield and economic costs and returns.