Search Results

You are looking at 11 - 20 of 37 items for

  • Author or Editor: Youping Sun x
  • All content x
Clear All Modify Search
Open access

Youping Sun, Liqin Li, Yuxiang Wang, and Xin Dai

Spirea (Spiraea sp.) plants are popular landscape plants in Utah and the Intermountain West United States. Spiraea betulifolia, S. japonica, S. media, S. nipponica, and S. thunbergii were evaluated for salinity tolerance in a greenhouse experiment. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solution at an EC of 3.0 or 6.0 dS·m−1 for 8 weeks. At the end of the experiment, all spirea plants survived and retained good visual quality, with average visual scores greater than 4 (0 = dead, 5 = excellent) when irrigated with saline solution at an EC of 3.0 dS·m−1, with the exception of S. thunbergii, which showed slight foliar salt damage and an average visual score of 3.8. When irrigated with saline solution at an EC of 6.0 dS·m−1, all S. thunbergii plants died, S. media exhibited severe foliar salt damage and an average visual score of 1.5, and S. betulifolia, S. japonica, and S. nipponica displayed slight-to-moderate foliar salt damage and average visual scores greater than 3. Regardless of spirea species, shoot dry weight decreased by 20% and 48% when irrigated with saline solution at ECs of 3.0 and 6.0 dS·m−1, respectively, compared with the control. Saline solution at an EC of 3.0 dS·m−1 did not affect net photosynthesis (Pn) of all spirea species except S. nipponica, but saline solution at an EC of 6.0 dS·m−1 decreased the Pn of all species by 36% to 60%. There were 37, 7, 36, 21, and 104 times more sodium (Na+) concentrations in leaf and 29, 28, 28, 13, and 69 times more chloride (Cl) concentrations in leaf than in the control when S. betulifolia, S. japonica, S. media, S. nipponica, and S. thunbergii were irrigated with saline solution at an EC of 6.0 dS·m−1. Correlation analyses indicated that foliar salt damage and reduced plant growth and photosynthesis were induced mainly by Cl ions accumulated in the spirea leaves. S. thunbergii was the most sensitive species; it had high mortality and low visual quality at both salinity levels. Spiraea japonica, S. nipponica, and S. betulifolia were relatively more tolerant and had good visual quality at elevated salinity compared with S. media and S. thunbergii. These research results are valuable for growers and landscape professionals during plant selection for nursery production using low-quality water and landscapes in salt-prone areas.

Free access

Shasha Wu, Youping Sun, Genhua Niu, James Altland, and Raul Cabrera

Asteraceae is one of the largest plant families with many important garden ornamental species. Salt tolerance of 10 aster perennials was evaluated in a greenhouse experiment, including the following: damianita (Chrysactinia mexicana), gregg’s mistflower (Eupatorium greggii), shasta daisy (Leucanthemum ×superbum ‘Becky’), blackfoot daisy (Melampodium leucanthum), lavender cotton (Santolina chamaecyparissus), aromatic aster (Symphyotrichum oblongifolium), copper canyon daisy (Tagetes lemmonii), four-nerve daisy (Tetraneuris scaposa), skeleton-leaf goldeneye (Viguiera stenoloba), and zexmenia (Wedelia texana). Plants were irrigated with nutrient solution at electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solutions at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) for 5 weeks. Upon termination, growth parameters, foliar salt damage, relative chlorophyll content [Soil-Plant Analysis Development (SPAD) readings], and mineral concentration were measured. Gregg’s mistflower, skeleton-leaf goldeneye, and lavender cotton were the most salt-tolerant species with less reductions in shoot dry weight (DW) in both EC 5 and EC 10. Considering the relatively severe foliar salt damage (visual quality score of 3.1 and 2.7 at EC 5; 2.4 and 1.6 at EC 10) and mortality rate (10% and 40%) in EC 10, aromatic aster and zexmenia should be avoided where poor quality water may be used for irrigation. Gregg’s mistflower and skeleton-leaf goldeneye had relatively lower leaf sodium (Na) concentrations suggesting that both species can selectively exclude Na. Damianita and the four daisies, i.e., blackfoot daisy, copper canyon daisy, four-nerve daisy, and shasta daisy, were salt sensitive as evidenced by their greater growth reduction, foliar salt damage, and high Na and chlorine (Cl) accumulation in leaves, and should be avoided in landscapes where poor quality water may be used for irrigation.

Open access

Qiang Liu, Youping Sun, James Altland, and Genhua Niu

Tatarian dogwood (Cornus alba) is an ornamental shrub with white fruits, creamy-white flowers, and red stems in fall through late winter and is widely used in residential landscape, public parks, and botanical gardens. Two greenhouse experiments were conducted to characterize the survival, morphological, aesthetic, and physiological responses of tatarian dogwood seedlings to salinity and drought stresses. In Expt. 1, tatarian dogwood seedlings grown in three soilless growing substrates (Metro-Mix 360, 560, and 902) were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solution (by adding calculated amount of sodium chloride and calcium chloride) at an EC of 5.0 or 10.0 dS·m−1 once per week for 8 weeks. Results showed that substrate did not influence the growth of tatarian dogwood seedling. All plants irrigated with saline solutions at an EC of 10.0 dS·m−1 died, whereas those irrigated with saline solutions at an EC of 5.0 dS·m−1 exhibited severe foliar salt damage with an average visual score of 1.0 (on a scale of 0 to 5, with 0 = dead and 5 = excellent without foliar salt damage). Compared with the control, saline solutions at an EC of 5.0 dS·m−1 reduced plant height and shoot dry weight (DW) by 50.8% and 55.2%, respectively. Relative chlorophyll content [soil plant analysis development (SPAD) reading], chlorophyll fluorescence (Fv/Fm), and net photosynthesis rate (Pn) also decreased when plants were irrigated with saline solutions at an EC of 5.0 and 10.0 dS·m−1. Leaf sodium (Na+) concentration of tatarian dogwood seedlings irrigated with saline solutions at an EC of 5.0 and 10.0 dS·m−1 increased 11 and 40 times, respectively, compared with the control, whereas chloride (Cl-) concentration increased 25 and 33 times, respectively. In Expt. 2, tatarian dogwood seedlings were irrigated at a substrate volumetric water contents (volume of water/volume of substrate, VWC) of 15%, 20%, 25%, 30%, 35%, 40%, or 45% using a sensor-based automated irrigation system for 60 days. Results showed that drought stress decreased plant growth of tatarian dogwood seedlings with a reduction of 71%, 85%, and 87% in plant height, leaf area, and shoot DW, respectively, when VWC decreased from 45% to 15%, but all plants survived at all VWC treatments. Significant reductions of photosynthesis (Pn), stomatal conductance (g S), transpiration rate (E), and water potential were also found in plants at a VWC of 15%, compared with other VWCs. However, SPAD readings and Fv/Fm of tatarian dogwood seedlings were similar among the VWCs. In conclusion, tatarian dogwood seedlings were sensitive to the salinity levels tested in this study but could survive at all tested substrate volumetric water contents and exhibited resistance to drought conditions.

Free access

Xiaoling Jin, Xijun Hu, Youping Sun, Donglin Zhang, and Ping He

Zelkova sinica Schneid. is a popular landscape plant in China because of its wide adaptation, strong disease resistance, large crown, and beautiful fall color. Immature embryos from Z. sinica seeds were cultured on woody plant medium (WPM) supplemented with 4.5 μM 6-Benzylaminopurine (BA) and 5.4 μM α-naphthaleneacetic acid (NAA) to induce callus, and 60% of immature embryos formed callus. The cream-white, friable, nodular callus with proembryogenic structures was then cultured on WPM containing 5.4 μM NAA in combination with 9.0 or 11.2 μM BA to regenerate shoots; approximately five shoots per explant were induced on 70% callus. Shoots were rooted on WPM containing 0.5 μM indole-3-butyric acid (IBA), on which 62.3% shoots developed roots with an average of 4.2 roots per shoot at 4 weeks. The regenerated plantlets were acclimatized and transplanted into the field. This protocol could be used for mass production for field plantation, genetic improvement, and germplasm exchange of Z. sinica.

Open access

Tingting Tong, Lili Shao, Zhonghua Peng, and Youping Sun

Full access

Joseph Masabni, Youping Sun, Genhua Niu, and Priscilla Del Valle

Southern U.S. states such as Texas experience high temperatures and intense solar radiation during the summer production season. Use of shadecloth is common in Spain and other Mediterranean countries and is becoming popular with homeowners or small-acreage farmers in Texas. Little information is available on the applicability of using shadecloth on tomato (Solanum lycopersicum) and chili pepper (Capsicum annuum) in the warm climate of Texas. The effects of two shade nets differing in shading intensity on growth, chlorophyll fluorescence, and photosynthesis of ‘Celebrity’ tomato and ‘Sweet Banana’ chili pepper was investigated from May to Aug. 2014. Plants were grown in 50% shade, 70% shade, or full sun. Compared with the unshaded control, tomato grown in 50% shade had similar yield and shoot fresh and dry weight and less photochemical stress. The 50% shade reduced number and weight of unmarketable tomato fruit. Similar results were obtained with chili pepper except for lower numbers of marketable fruit. The 70% shade significantly reduced yield parameters of both tomato and chili pepper. Both 50% and 70% shadecloth reduced leaf temperatures of tomato and chili pepper with variable results in June and July. Growth index [(height + width 1 + width 2) ÷ 3] of tomato and chili pepper was the highest with 50% shade, the lowest with full sun, and intermediate with 70% shade. The maximum net photosynthetic rates (Pn) of tomato determined from a Pn to light response curve supported the results on growth and yield. However, the maximum Pn of chili pepper was higher in full sun treatment compared with 50% or 70% shade. The latter two were almost identical. This one growing season study indicated that shading at 50% benefits tomato and chili pepper production in west Texas by reducing heat stress; however, a shading percentage below 50% may be better.

Open access

Triston Hooks, Genhua Niu, Joe Masabni, Youping Sun, and Girisha Ganjegunte

Pomegranate is a drought-tolerant and salt-tolerant crop. Its fruits contain high levels of phytochemicals that have many health benefits. Pomegranate has the potential to be an alternative crop in areas where water availability is limited, such as west Texas. However, more than 500 pomegranate varieties are estimated to exist worldwide, and little is known about which varieties are suitable for growing in the west Texas region. Therefore, the objective of this study was to evaluate the field performance of 22 pomegranate varieties, specifically based on phenology, resistance to sunburn, fruit split, fruit rot (resistance was calculated by subtracting the percent incidence by 100), yield, fruit phytochemicals, and Brix over the course of 3 years from 2016 to 2018. Cold damage, caused by below-freezing temperatures encountered from Nov. 2018 to Feb. 2019, was also evaluated in Apr. 2019. Our results showed significant varietal differences in nearly all response variables measured, indicating that varietal selection is important for pomegranate production for specific regions, such as west Texas. Leaf budding ranged from 47 to 62 days in 2016, 41 to 54 days in 2017, and 49 to 60 days in 2018. Anthesis ranged from 87 to 119 days in 2016, 80 to 94 days in 2017, and 92 to 114 days in 2018. Fruit resistance to split was broad and ranged from 7.3% to 79.1% in 2017 and from 14.2% to 99.7% in 2018. Fruit sunburn resistance ranged from 14.0% to 64.6% in 2017 and from 28.3% to 90.0% in 2018. Fruit heart rot incidence was nominal for all varieties. Total phenolic compound contents of the pomegranate fruit juice ranged from 0.81 to 1.52 mg GAE/mL, and the total antioxidant capacity ranged from 3.44 to 6.81 mg TE/mL. The yield per tree ranged from 1.00 to 7.96 kg in 2017 and from 0.81 to 10.26 kg in 2018. Brix ranged from 12.5% to 17.4% in 2017 and from 13.9% to 18.4% in 2018. Early winter below-freezing temperatures caused different degrees of cold damage; however, 5 of 22 varieties that originated from Russia did not show any cold damage. Results of a hierarchical cluster analysis based on the means of the key response variables of yield and Brix indicated that four varieties (Al-Sirin-Nar, Russian 8, Ben Ivey, and Salavatski) were notable for having both high yield and high Brix.

Free access

Genhua Niu, Pedro Osuna, Youping Sun, and Denise S. Rodriguez

Ornamental chile peppers are popular bedding plants. As high-quality water supply becomes limited in many parts of the world, alternative waters such as municipal reclaimed water is encouraged to be used for landscape irrigation. The purpose of this study was to assess the relative salt tolerance of 10 cultivars of ornamental chile peppers by irrigating the mature plants with saline solutions and germinating seeds in saline substrate in a greenhouse. In the mature plant salt tolerance experiment, plants were irrigated with nutrient solution (no addition of salts, control) or saline solution at electrical conductance (EC) of 4.1 dS·m−1 or 8.1 dS·m−1 for 8 weeks. Plants in the EC of 4.1 dS·m−1 treatment did not have any foliar salt damage regardless of cultivar. At EC of 8.1 dS·m−1, ‘NuMex Memorial Day’ had the most severe foliar salt damage, whereas ‘NuMex April Fool’s Day’, ‘NuMex Cinco de Mayo’, ‘NuMex Thanksgiving’, and ‘NuMex Twilight’ had little or no foliar damage. Shoot dry weight (DW) reduction at EC of 8.1 dS·m−1 compared with control was smallest in ‘NuMex Thanksgiving’ (15%), whereas ‘NuMex Memorial Day’ had the greatest reduction of 74% followed by ‘NuMex Christmas’ of 61%. The highest shoot DW reduction in ‘NuMex Memorial Day’ coincided with lowest visual score, indicating that this cultivar was the least tolerant to salinity. The leaf Na+ and Cl concentrations increased dramatically with increasing EC of the irrigation water in all cultivars. The highest Na+ concentration of 10.9 mg·g−1 DW at EC of 8.1 dS·m−1 was observed in ‘NuMex Christmas’. The highest Cl concentration at EC of 8.1 dS·m−1 was found in ‘NuMex Memorial Day’ with 64.8 mg·g−1 DW, which was four times higher than the control. In the seedling emergence experiment, seeds of the 10 cultivars were germinated in substrate either moistened with reverse osmosis water (EC ≈0) or saline solution at EC of 17.1 dS·m−1. ‘NuMex Christmas’ and ‘NuMex Memorial Day’ had the lowest relative seedling emergence index, indicating that these two cultivars were the least tolerant to salinity during the seedling emergence stage. ‘NuMex Thanksgiving’ and ‘NuMex Cinco de Mayo’ had the highest relative seedling emergence index. Combining the results from both experiments, we concluded that ‘NuMex Cinco de Mayo’ and ‘NuMex Thanksgiving’ were the most tolerant cultivars, whereas ‘NuMex Christmas’ and ‘NuMex Memorial Day’ were the least tolerant ones.

Full access

Youping Sun, Genhua Niu, Joseph G. Masabni, and Girisha Ganjegunte

A greenhouse experiment was conducted to determine the relative salt tolerance of pomegranate (Punica granatum) cultivars. Twenty-two pomegranate cultivars were irrigated weekly with a saline solution at an electrical conductivity (EC) of 10.0 dS·m–1 for 4 weeks and subsequently with a saline solution at an EC of 15.0 dS·m–1 for another 3 weeks (salt treatment). Another group of uniform plants was watered with a nutrient solution without additional salts at an EC of 1.2 dS·m–1 (control). No visual foliar salt damage (leaf burn, necrosis, or discoloration) was observed during the entire experimental period; however, salt treatment impacted pomegranate growth negatively, with a large variation among cultivars. Salt treatment reduced shoot length by 25% and dry weight (DW) by 32% on average for all cultivars. Cluster analysis classified the 22 tested pomegranate cultivars in two groups. The group consisting of ‘Arturo Ivey’, ‘DeAnda’, ‘Kazake’, ‘Russian 8’, ‘Apseronski’, ‘Purple Heart’, ‘Carolina Vernum’, ‘Chiva’, ‘Kunduzski’, ‘Larry Ceballos 1’, ‘ML’, ‘Salavatski’, ‘Spanish Sweet’, and ‘Wonderful’ was more salt tolerant than the group including ‘Al-Sirin-Nar’, ‘Kandahar’, ‘Surh-Anor’, ‘Early Wonderful’, ‘Angel Red’, ‘Ben Ivey’, ‘Utah Sweet’, and ‘Mollar’. The sodium (Na) concentration in the leaf tissue of all 22 pomegranate cultivars was less than 1 mg·g–1 on a DW basis. All pomegranate cultivars in the salt treatment had an average leaf chloride (Cl) content of 10.03 mg·g–1 DW—an increase of 17% from the control. These results indicate that pomegranate plants have a strong capability to exclude Na and Cl accumulation in leaf tissue. In conclusion, the pomegranate plant is very tolerant to saline water irrigation up to an EC of 15 dS·m–1 with little foliar salt damage and a slight growth reduction. Investigation is needed to determine the effects of saline water on the fruit yield and nutritional quality of pomegranate.

Open access

Ji-Jhong Chen, Shuyang Zhen, and Youping Sun

Commercial optical chlorophyll meters estimate relative chlorophyll content using the ratio of transmitted red light and near-infrared (NIR) light emitted from a red light-emitting diode (LED) and an NIR LED. Normalized difference vegetation index (NDVI) sensors have red and NIR light detectors and may be used to estimate chlorophyll content by detecting the transmitted red and NIR light through leaves. In this study, leaf chlorophyll content of ‘Torrey’ buffaloberry (Shepherdia ×utahensis) plants treated with 0 mm [zero nitrogen (N)], 2 mm (medium N), or 4 mm (ample N) ammonium nitrate for 3 weeks were evaluated using two commercial chlorophyll meters and NDVI sensors. The absolute chlorophyll content was determined using chlorophyll extraction. Our results showed that plants receiving ample N and medium N had decreased transmitted red light (i.e., greater absorption in red light). Measurements of optical chlorophyll meters, NDVI sensors, and chlorophyll extraction similarly showed that plants receiving medium N and ample N had greater leaf chlorophyll content than those receiving zero N. Relative leaf chlorophyll content estimated using NDVI sensors correlated positively with those from the chlorophyll meters (P < 0.0001; r2 range, 0.56–0.82). Therefore, our results indicate that NDVI measurements are sensitive to leaf chlorophyll content. These NDVI sensors, or specialized sensors developed using similar principles, can be used to estimate the relative chlorophyll content of nursery crops and help growers adjust fertilization to improve plant growth and nutrient status.