Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Yoshiaki Kitaya x
  • All content x
Clear All Modify Search
Free access

Toshio Shibuya, Ryosuke Endo, Yoshiaki Kitaya, and Saki Hayashi

Light with a higher red to far-red ratio (R:FR) than sunlight reduces plant growth, but the cause has not been firmly established. In the present study, cucumber seedlings were grown under normal light (similar to sunlight; R:FR = 1.4) from metal-halide lamps or high-R:FR light (R:FR = 4.3) created by transmitting their light through FR-absorbing film, and then their growth parameters and photosynthesis were compared. The relative growth rate (RGR) at high R:FR was 92% of that under normal R:FR, although the net assimilation rate (NAR) did not differ between the treatments, indicating that changes in net photosynthesis per unit leaf area did not cause the growth inhibition at high R:FR. The CO2 exchange per unit leaf area did not differ between the treatments, which supports this hypothesis. The leaf area ratio (LAR) of total plant dry weight of high R:FR seedlings to that of normal R:FR seedlings was also 92%. This suggests that growth suppression in the high R:FR seedlings was caused mainly by decreased LAR. The specific leaf area (SLA) and leaf weight ratio (LWR), components of LAR, under high-R:FR light were 89% and 105%, respectively, of those under normal light, indicating that the smaller LAR at high R:FR mainly results from suppressed leaf enlargement per unit leaf dry matter.

Free access

Toshio Shibuya, Kaori Itagaki, Motoaki Tojo, Ryosuke Endo, and Yoshiaki Kitaya

We investigated the effects of fluorescent illumination with a high red-to-far-red ratio (R:FR) on the resistance of cucumber (Cucumis sativus) seedlings to powdery mildew fungus (Sphaerotheca cucurbitae; PM). Seedlings were grown at a photosynthetic photon flux (PPF) of 300 μmol·m−2·s−1 provided by fluorescent lamps with high R:FR light (R:FR = 7.0; FLH) or low R:FR light (R:FR = 1.1; FLL) until cotyledons or the first foliage leaf were fully expanded. Spores of PM were then inoculated onto the leaves, and the seedlings were grown for 7 days (from cotyledon stage) or 9 days (from foliage–leaf stage) under FLH. The number of PM colonies on FLH seedlings was 0.80× (cotyledons) and 0.62× (foliage leaves) the number on FLL seedlings. The reduction on the FLH seedlings was probably the result of changes in leaf morphological characteristics such as a thicker epidermal tissue as a result of the higher R:FR illumination. The number of PM colonies on cotyledons of the FLH seedlings was also smaller than that on seedlings grown under metal-halide lamps providing a spectrum similar to that of natural light (R:FR = 1.2).

Free access

Toshio Shibuya, Akihito Sugimoto, Yoshiaki Kitaya, Makoto Kiyota, Yuichiro Nagasaka, and Shinya Kawaguchi

We estimated leaf vapor conductance (g l) of cucumber grafted transplants under greenhouse growing conditions. Fifty-six transplants were placed on a bench in the greenhouse. The transpiration rate (Tr) of the canopy was estimated by weighing the 16 transplants in the center using an electronic balance. The total vapor diffusion resistance (R l+b) from inside the leaf to the atmosphere was estimated based on the vapor diffusion model, which incorporates the absolute humidity near the leaf surface and that inside the leaf as well as Tr. Next, g l was estimated from R l+b and the resistance of leaf boundary layer evaluated with a model leaf. The Tr in the afternoon tended to be larger than that in the morning at the same photosynthetic photon flux (PPF) level. By contrast, the g l in the afternoon tended to be smaller than that in the morning at the same PPF level. The decrease of g l in the afternoon seems to be induced by the excessive transpiration resulting from an increase of vapor pressure deficit at the leaf surface.

Full access

Toshio Shibuya, Junki Komuro, Norio Hirai, Yoshiko Sakamoto, Ryosuke Endo, and Yoshiaki Kitaya

We evaluated the preference of adult sweetpotato whitefly [SPWF (Bemisia tabaci biotype B)] to cucumber (Cucumis sativus) seedlings grown under fluorescent lamps (FLs) or metal-halide lamps (MLs) that provided a spectrum similar to that of natural light. Cucumber seedlings were grown under FLs or MLs at a photosynthetic photon flux of 350 μmol·m−2·s−1 in a 12/12-hour light/dark cycle. The red:far red (R:FR) ratio of FL was 7.0 and that of ML was 1.2. Pairs of cucumber seedlings, one grown under FLs and the other under MLs, were then placed in cages and about 100 SPWF adults were released. There were significantly fewer SPWF adults on the FL cucumber seedlings (36%) than on the ML seedlings (64%) 24 hours after release. FL cucumber seedlings had higher chlorophyll content and thicker leaves than ML seedlings. The lower attractiveness of the FL cucumber seedlings was probably due to changes in morphologic characteristics such as the leaf color and thickness resulting from high R:FR illumination of FL. The fact that light quality affects the plant attractiveness to herbivores should be considered in selecting light sources for transplant production under artificial light.