Search Results

You are looking at 11 - 20 of 24 items for

  • Author or Editor: Milton E. McGiffen Jr x
  • All content x
Clear All Modify Search
Free access

Edmund J. Ogbuchiekwe, Milton E. McGiffen Jr., and Mathieu Ngouajio

Economic analysis compared the returns of cropping systems and management practices for production of fall lettuce (Lactuca sativa L.) and spring cantaloupe (Cucumis melo) following summer cover crops. The cover crop treatments included: cowpea [Vigna unguiculata (L.) Walp.] incorporated into the soil in the fall, cowpea used as mulch in the fall, sorghum sudangrass [Sorghum bicolor (L.) Moench] incorporated into the soil in the fall, and a bare ground control. Lettuce and cantaloupe were managed using conventional, integrated, and organic practices. The effect of each cropping system and management practice on crop yield, cost of production and net return was determined. In 1999 and 2000, yield and net return were greatest for cantaloupe and lettuce when the cowpea cover crop was incorporated into the soil before planting. The effect of crop management practice varied with type of cover crop. When lettuce was planted into cowpea-incorporated treatment in 1999, conventional management had the highest cash return followed by integrated crop management. In 2000, organically-grown lettuce after cowpea incorporated had the highest net return followed by integrated crop management grown under cowpea incorporated treatments. In 1999 and 2000, integrated cantaloupe following cowpea-incorporated treatment had the highest yield and cash-return. A 20% price premium for organic produce increased the net returns for the organic-grown lettuce and cantaloupe. Organic lettuce following cowpea-incorporated treatments produced a high net of $2,516/ha in 1999 and $5,971/ha in 2000. The net returns due to 20% organic premium price varied between 1999 and 2000 in cantaloupe production. They were highest for organic cantaloupe after bareground with a net return of $4,395 in 1999 and $3,148 in 2000 for organic cantaloupe after sudangrass.

Free access

Milton E. McGiffen Jr., Dan James Pantone, and John B. Masiunas

Path analysis is a statistical method for determining the magnitude and direction of multiple effects on a complex process. We used path analysis to assess 1) the impact of black nightshade(Solarium nigrum L.) or eastern black nightshade(Solarium ptycanthum Dun.) competition on the yield components of `Heinz 6004' processing tomato (Lycopersicon esculentum Mill.) and 2) the relationship between tomato yield components and total and marketable yield. Either black or eastern black nightshade was interplanted with tomatoes at population densities from 0 to 4.8/m2. Path analysis revealed that increasing weed population density led directly to fewer green and total fruit per plant, two components of marketable yield. However, the percentage of culls per plant and fruit weight were not affected by nightshade population density. Using correlation coefficients alone would have lead to the erroneous conclusion that the percentage of culls did not affect marketable yield; our path analysis demonstrated that decreasing the percentage of culls through breeding or cultural practices will strongly affect marketable yield. The total number of fruit was the most important yield component in determining total and marketable yields per plant. Breeding and management practices that maximize fruit set, increase maturity at harvest, and decrease the percentage of culls would be expected to increase marketable yield.

Free access

Milton E. McGiffen Jr., John B. Masiunas, and Morris G. Huck

Field and greenhouse experiments were conducted to determine the response of eastern black nightshade (Solanum ptycanthum), black nightshade (S. nigrum), and tomato (Lycopersicon esculentum Mill. cv. Heinz 6004) to water stress and the effect of nightshade-tomato competition on soil water content. In the greenhouse, plants were exposed to three water regimes induced by watering either daily, weekly, or biweekly. Water deficit caused a similar decrease in height, weight, and leaf area in all three species. There was more than a 50% reduction in height when the plants were watered biweekly compared with daily watering. Water stress caused a shift in biomass from shoots to roots in all three species. Black nightshade and tomato produced thinner leaves in response to water deficit. Companion field experiments were conducted during the 1989 and 1990 growing seasons in Urbana, Ill. Eastern black nightshade and black nightshade were transplanted at densities of 0.8, 1.6, 3.2, and 4.8 plants/m2, 5 days after tomatoes were transplanted. These nightshade densities caused significant reductions in soil water content. In 1989, only the highest density of either nightshade species reduced topsoil water content. In 1990, all densities of nightshade, except the two lowest densities of black nightshade, reduced topsoil water content. Eastern black nightshade consistently had a greater effect on tomato yield than black nightshade. Tomato yields averaged over both years were 17,000 and 8,000 kg·ha-1 at the highest (4.8 plants/m*) density of black and eastern black nightshade, respectively. The decrease in soil moisture from high densities of nightshade could not account for the reduced yields.

Full access

Carl E. Bell, Brent E. Boutwell, Edmund J. Ogbuchiekwe, and Milton E. McGiffen Jr.

Application of linuron was compared with hand-weeding and a nontreated control (= control) for weed control in carrots. Linuron, applied pre- or postemergent, was slightly less effective than the 100% weed control obtained by hand-weeding. Carrot yields were similar for all treatments, and were at least six times as great as in the control. In 1996, linuron treatments returned net profits ranging from $980 to $1887 per ha, compared to $740 for hand-weeding and - $2975 for the control. In 1997, return on linuron treatments was greater, ranging from $5326 to $6426, compared with $2852 for hand-weeding. Marginal rates of return ranged from 21% to 86% in 1996. In 1997, rates of return for every dollar invested in linuron were over 59%. Chemical name used: N′-(3,4-dichlorophenyl)-N-methoxy-N-methylurea (linuron).

Free access

Carl E. Bell, Brent E. Boutwell, Edmund J. Ogbuchiekwe, and Milton E. McGiffen Jr.

Application of linuron was compared with hand-weeding and a nontreated control (= control) for weed control in carrots. Linuron, applied pre- or postemergent, was slightly less effective than the 100% weed control obtained by hand-weeding. Carrot yields were similar for all treatments, and were at least six times as great as in the control. In 1996, linuron treatments returned net profits ranging from $980 to $1887 per ha, compared to $740 for hand-weeding and -$2975 for the control. In 1997, return on linuron treatments was greater, ranging from $5326 to $6426, compared with $2852 for hand-weeding. Marginal rates of return ranged from 21% to 86% in 1996. In 1997, rates of return for every dollar invested in linuron were over 59%. Chemical name used: N′-(3,4-dichlorophenyl)-N-methoxy-N-methylurea (linuron).

Free access

Milton E. McGiffen Jr., Steven A. Fennimore, W. Thomas Lanini, and Carl E. Bell

The Food Quality Protection Act may result in the withdrawal from use of many herbicides in the “minor” crops: fruits, vegetables, herbs, flowers, and ornamentals. An obvious mitigation strategy is to test and register newer, low-rate herbicides that are currently used only in large-acreage field crops. The newer herbicides have low mammalian toxicity, few off-target effects, and are often used at rates of less than 0.1 kg/ha. Many of the older herbicides are applied at rates of several kg/ha and have off-target effects that can make their use problematic. Low-rate herbicides could replace the older chemicals commonly used in horticultural crops. We have tested several promising low-rate herbicides: carfentrazone, cloransulam, dimethenamid, halosulfuron, rimsulfuron, and sulfentrazone. Broccoli, cantaloupe, carrot, lettuce, onion, spinach, and processing tomato varieties were screened for tolerance to low-rate herbicides at four locations in California that included desert, inland, and coastal environments. All of the crops tested had tolerance for one or more of the low-rate herbicides. Data on similar tests for other horticultural crops will also be presented. The potential for registering these herbicides in vegetables and other horticultural crops varies with the crop and the pesticide's manufacturer. Pesticides that may soon face removal from widespread use will be reviewed. Herbicides and other potential alternatives to currently registered herbicides will be examined to determine possible practical alternatives for specific crops and weeds.

Free access

Guangyao Wang, Milton E. McGiffen Jr., John L. Lindquist, Jeff D. Ehlers, and Ivan Sartorato

Ecophysiological simulation models provide a quantitative method to predict the effects of management practices, plant characteristics, and environmental factors on crop and weed growth and competition. The INTERCOM interplant competition model was parameterized, calibrated by monoculture data for three cowpea (Vigna unguiculata) genotypes that differed in growth habit, common sunflower (Helianthus annuus), and common purslane (Portulaca oleracea), and used to simulate competition of cowpea cover crops with sunflower or purslane. The simulation results were compared with observations from field competition experiments in 2003 and 2004. INTERCOM did not simulate biomass production and leaf area index (LAI) of cowpea and purslane well, probably due to a lack of published data on purslane physiology. INTERCOM simulated the competition of cowpea genotypes and sunflower accurately. The simulation model of cowpea and sunflower at two densities was used to study the effects of cowpea growth habits on final biomass production of cowpea and sunflower. The model suggested that the erect growth habit was more competitive than the semi-erect and prostrate growth habits when cowpea genotypes were grown with sunflower. Cowpea leaf area distribution was important to higher cowpea biomass production, while cowpea height growth was important to reduce sunflower biomass.

Free access

Guangyao Wang, Mathieu Ngouajio, Milton E. McGiffen Jr, and Chad M. Hutchinson

The effect of summer cover crop and management system on subsequent fall romaine lettuce (Lactuca sativa L.) and spring muskmelon (Cucumis melo L.) growth and yield was evaluated in the Coachella Valley of California from 1999 to 2003. Cover crop treatments included: 1) cowpea [Vigna unguiculata (L.) Walp.] incorporated into the soil in the fall (CPI), 2) cowpea used as mulch in the fall (CPM), 3) sudangrass [Sorghum bicolor (L) Moench] incorporated into the soil in the fall (SGI), and 4) a bare ground control (BG). Management system treatments included: 1) conventional system (CON), 2) integrated crop management (ICM), and 3) organic system (ORG). Cowpea cover crop, either incorporated or used as surface mulch, increased lettuce growth and yield by increasing biomass allocation to lettuce leaf and leaf area growth. Cowpea mulch decreased muskmelon leaf and biomass growth and reduced muskmelon yield. Sudangrass produced more biomass than cowpea and reduced lettuce growth and yield. However, in the following spring, the SGI treatment had the highest muskmelon yield. Lettuce growth was significantly affected by management system, while muskmelon growth at the early stage was unaffected. The organic system reduced both lettuce and muskmelon yield compared with CON and ICM management systems.

Free access

Edmund J. Ogbuchiekwe, Milton E. McGiffen Jr., Joe Nunez, and Steven A. Fennimore

Preemergent and postemergent herbicides were evaluated in the Mediterranean climate of the southern San Joaquin Valley and the desert climate of the Imperial Valley from 1998 through 2000. Sixteen herbicide treatments were applied both as preemergence (PRE) and postemergence (POST) applications to carrot (Daucus carota L.). Carrot was generally more tolerant to PRE herbicide applications than to POST applications. Carrot was tolerant to PRE and POST imazamox and triflusulfuron at both locations. Carrot root losses due to herbicide were consistent with visual ratings. Treatments that injured carrot tops early in the growing season did not always reduce yield at the end of the season. PRE applications of imazamox and triflusulfuron did not affect carrot tops or the number or weight of marketable carrots. Carrots grown in the Imperial Valley and in the San Joaquin Valley were tolerant to PRE applications of carfentrazone, sulfentrazone, and imazamox. Results were similar for POST applications, although carfentrazone slightly injured carrot roots. PRE application of herbicides increased forked roots more than POST. Chemical names used: α, 2-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1, 2,4-triazol-1-yl]-4-fluorobenzenepropanoic acid (carfentrazone); N-[2,4-dichloro-5-[4-(difluoromethyl)-4,5-dihydro-3-methyl-5-oxo-1H-1,2,4-triazol-1-yl]phenyl]me thanesulfonamide (sulfentrazone); N-(2 carbomethoxy-6-chlorophenyl)-5-ethoxy-7-fluoro (1,2,4) triazolo-[1, 5-c] pyrimidine-2-sulfonamide (cloransulam-methyl); 2-chloro-N-[(1-methyl-2-methoxy)ethyl]-N-(2,4-dimethyl-thein-3-yl)-acetamide (dimethenamid); (2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-(methoxymethyl)-3-pyridinecarboxylic acid) (imazamox); 3-chloro-5-[[[[(4,6-dimethoxy-2-pyrimidinyl) amino] carbonyl] amino] sulfonyl]-1-methyl-1H-pyrazole-4-carboxylic acid (halosulfuron); N-[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-3-(ethylsulfonyl)-2-pyridinesulfonamide (rimsulfuron); (methyl 2[[[[[4-(dimethylamino)-6-[2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl] amino] carbonyl] amino] sulfonyl]-3-methylbenzoate) (triflusulfuron).

Free access

Guangyao Wang, Jeff D. Ehlers, Philip A. Roberts, Eddie J. Ogbuchiekwe, and Milton E. McGiffen Jr.

Competitive cover crop varieties are needed to reduce weed problems and herbicide use. Identifying specific crop traits related to competitive ability would provide breeders with useful information that could be used to develop an ideotype for highly competitive cover crop varieties. Cowpea varieties with different growth habits were grown with sunflower or purslane to determinate which growth habit (erect, semi-erect, and prostrate) is more likely to be most competitive with tall or short growing weeds. Regression models were used to analyze additive and replacement series experiments. The results showed that erect varieties were more competitive with weeds than semi-erect varieties and prostrate varieties. However, the simple regression models did not provide much information about competitive mechanisms helpful to breeders. An ecophysiological model, INTERCOM, was used to understand competitive mechanisms. Validated INTERCOM model provided us with more information about competitive cover crop traits, including competitive growth habit.