Search Results

You are looking at 11 - 20 of 78 items for

  • Author or Editor: Genhua Niu x
  • All content x
Clear All Modify Search
Free access

Genhua Niu, Denise S. Rodriguez, and Wayne Mackay

Oleander (Nerium oleander L.), native to southern Asia and the Mediterranean region, is a fast-growing evergreen shrub planted widely in the southern United States. A greenhouse study was conducted to quantify the growth and physiological responses of two cultivars, Hardy Pink and Hardy Red, and two breeding lines, EP1 and EP2, of oleander to a 12-week cyclic drought stress. Drought stress was imposed by irrigating the plants to near container capacity and then withholding irrigation until predetermined container weights were reached. Compared with the control where plants were well-irrigated throughout the experiment, shoot dry weight (DW) was reduced by 52%, 41%, 34%, and 11% in EP1, EP2, ‘Hardy Red’, and ‘Hardy Pink’, respectively. Root-to-shoot DW ratio was higher for the drought-treated plants than the control, regardless of cultivar or breeding line (hereafter, clone). The increase in root-to-shoot DW ratio from the drought treatment was highest in EP1, followed by EP2, ‘Hardy Pink’, and ‘Hardy Red.’ New shoot growth was greatest in ‘Hardy Pink’, followed by ‘Hardy Red’, EP1, and EP2. The number of newly developed shoots during the drought treatment period was 6.8, 3.0, 0.7, and 0.0 in ‘Hardy Pink’, ‘Hardy Red’, EP1, and EP2, respectively. As substrate volumetric moisture content decreased from 30%, leaf net photosynthetic rate (Pn), evapotranspiration rate (E), and stomatal conductance (gs) decreased in all clones. A curvilinear relationship between Pn and gs was found in all clones. EP1 had a lower maximum Pn (Pm) than those of ‘Hardy Pink’ and EP2 but was not different from that of ‘Hardy Red’. Predawn leaf water potential began to decrease rapidly when substrate moisture content dropped below 15% in all clones. During the dry-down, compared with the control, increases in minimal fluorescence (F0) or decreases in maximal fluorescence (Fm) and Fv/Fm (Fv = Fm – F0) in drought-stressed plants were observed in all clones, indicating some damage in photosystem II from the drought treatment. However, compared with growth parameters, the differences in physiological responses to drought stress among the clones were much smaller. ‘Hardy Pink’ was more tolerant to drought stress than ‘Hardy Red’ and the other two clones in terms of productivity because it maintained greatest growth during the drought-stress period. However, EP2 and EP1 may be more tolerant if survival is concerned because they had a higher root-to-shoot DW ratio with minimal new growth.

Free access

Youping Sun, Genhua Niu, and Christina Perez

Salt tolerance of seven Texas Superstar® perennials [Malvaviscus arboreus var. drummondii (Turk’s cap), Phlox paniculata ‘John Fanick’ (‘John Fanick’ phlox), Phlox paniculata ‘Texas Pink’ (‘Texas Pink’ phlox), Ruellia brittoniana ‘Katie Blue’ (‘Katie Blue’ ruellia), Salvia farinacea ‘Henry Duelberg’ (‘Henry Duelberg’ salvia), Salvia leucantha (mexican bush sage), and Verbena ×hybrida ‘Blue Princess’ (‘Blue Princess’ verbena)] was evaluated in a greenhouse experiment. Plants were irrigated with a nutrient solution at electrical conductivity (EC) of 1.1 dS·m−1 (control) or a salt solution at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) for 8 weeks. ‘John Fanick’ and ‘Texas Pink’ phlox plants in EC 5 had severe salt foliage damage, while those in EC 10 were died. Mexican bush sage in EC 10 had severe salt foliage damage. Turk’s cap, ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and ‘Blue Princess’ verbena had minor foliar damage regardless of treatment. EC 5 reduced the shoot dry weight (DW) by 45% in ‘Texas Pink’ phlox and 11% to 18% in ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and mexican bush sage, but did not impact the shoot DW of Turk’s cap and ‘John Fanick’ phlox. EC 10 further decreased the shoot DW of ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and mexican bush sage plants by 32%, 29%, and 56%, respectively. EC 5 decreased leaf net photosynthesis (Pn) of ‘Texas Pink’ phlox and mexican bush sage, while EC 10 reduced Pn of all species except ‘Henry Duelberg’ salvia and ‘Blue Princess’ verbena. ‘Katie Blue’ ruellia and ‘Blue Princess’ verbena had relatively lower leaf Na concentration and ‘John Fanick’ phlox, ‘Texas Pink’phlox, and mexican bush sage had higher leaf Cl concentrations. In summary, Turk’s cap, ‘Katie Blue’ ruellia, ‘Henry Duelberg’ salvia, and ‘Blue Princess’ verbena were the most tolerant perennials, and ‘John Fanick’ phlox, ‘Texas Pink’ phlox, and mexican bush sage were the least tolerant to salinity.

Free access

Genhua Niu, Denise S. Rodriguez, and Mengmeng Gu

Use of reclaimed water to irrigate urban landscapes will likely increase because fresh water supply is diminishing and the population continues to grow in the semiarid southwestern United States. Salt tolerance of two native landscape woody ornamentals, Texas mountain laurel (Sophora secundiflora) and Mexican redbud (Cercis canadensis var. mexicana), was investigated in a greenhouse experiment. Seedlings of the two species were grown in two substrates mixed with composted mulch and a commercial potting mix at two ratios and irrigated with saline solutions at three salinity levels: 1.6 (control, nutrient solution), 3.0, or 6.0 dS·m−1 electrical conductivity (EC). There was no interaction between substrate and EC of irrigation water. Foliar salt damages such as leaf drop, leaf curl, and edge burn were observed in Mexican redbud when the plants were irrigated with solutions at EC of 3.0 and 6.0 dS·m−1. No symptoms were observed on Texas mountain laurel plants, although plants irrigated at EC of 3.0 and 6.0 dS·m−1 were smaller compared with controls. Shoot growth and elongation of both species were reduced by the elevated salinity of irrigation water, and the reduction in Mexican redbud was greater than Texas mountain laurel. Leaf photosynthesis rate and leaf stomatal conductance were also reduced in Texas mountain laurel by the elevated salinity of irrigation water. Tissue Na+ and Cl concentrations were higher in Texas mountain laurel irrigated with water of elevated salinity.

Free access

Genhua Niu, Denise S. Rodriguez, and Cynthia McKenney

Wildflowers are good candidates for water-wise landscapes because many of them are drought-tolerant after establishment. Little information is available regarding whether these herbaceous wildflowers are tolerant to salt stress. Container experiments were carried out in a greenhouse and a shadehouse under semiarid climate conditions to investigate the salt tolerance of six native wildflowers: Salvia farinacea (mealy cup sage), Berlandiera lyrata (chocolate daisy), Ratibida columnaris (Mexican hat), Oenothera elata (Hooker’s evening primrose), Zinnia grandiflora (plains zinnia), and Monarda citriodora (lemon horsemint). In the greenhouse experiment, mealy cup sage, Hooker’s evening primrose, and plains zinnia were irrigated with a saline solution with an electrical conductivity (EC) of 1.5 (control, nutrient solution), 2.8, 4.1, 5.1, or 7.3 dS·m−1 for 45 days. All plants survived except for plains zinnia at EC of 7.3 dS·m−1. Shoot dry weights decreased as EC of irrigation water increased for all three species. In the shadehouse experiment (second year), plants of all species (plains zinnia was not included) were irrigated with saline solutions at EC of 0.8 (control, tap water), 2.8, 3.9, 5.5, or 7.3 dS·m−1 for 35 days. Plants were fertilized with slow-release fertilizer in the shadehouse experiment. After 5 weeks of treatment, all plants of lemon horsemint in the elevated salinity treatments, regardless of EC levels, were dead. The visual foliar salt damage rating was lowest for lemon horsemint. Chocolate daisy had low survival percentages and low foliar ratings at EC of 5.5 dS·m−1 and 7.3 dS·m−1. For the other three species, survival percentages were 80% and 90% at EC of 7.3 dS·m−1. Hooker’s evening primrose and mealy cup sage had similar low foliar visual ratings at EC of 7.3 dS·m−1, whereas Mexican hat plants had high foliar visual ratings regardless of salinity treatment. All species had similar high uptake of Na+ in shoots, whereas Hooker’s evening primrose had slightly higher Cl concentrations compared with other species. Based on these results, lemon horsemint was most sensitive to salinity stress followed by chocolate daisy. Hooker’s evening primrose and mealy cup sage were moderately tolerant and may be irrigated with low salinity water at EC of less than 3.9 dS·m−1. Mexican hat was the most tolerant among the six species.

Free access

Genhua Niu, Terri Starman, and David Byrne

The responses of garden roses to irrigation water with elevated salts are unknown. Two experiments were conducted to evaluate the relative salt tolerance of 13 self-rooted rose cultivars by irrigating the plants with nutrient solutions at an electrical conductivity (EC) of 1.4 dS·m−1 (control) or nutrient saline solutions at EC of 3.1, 4.4, or 6.4 dS·m−1. In Expt. 1, ‘Belinda’s Dream’, ‘Caldwell Pink’, ‘Carefree Beauty’, ‘Folksinger’, ‘Quietness’, and ‘Winter Sunset’ plants were grown in a greenhouse from 13 Aug. to 21 Oct. (10 weeks). Shoot dry weight of all cultivars decreased as EC of irrigation water increased. ‘Winter Sunset’ was most sensitive among these cultivars to salt stress followed by ‘Carefree Beauty’ and ‘Folksinger’ with severe leaf injury at EC of 3.1 dS·m−1 or higher or death at EC of 6.4 dS·m−1. No visual damage was observed in ‘Belinda’s Dream’ or ‘Caldwell Pink’, regardless of the salinity level. In Expt. 2, ‘Basye’s Blueberry’, ‘Iceberg’, ‘Little Buckaroo’, ‘The Fairy’, ‘Marie Pavie’, ‘Rise N Shine’, and ‘Sea Foam’ plants were grown in the greenhouse from 29 Sept. to 16 Nov. (7 weeks) and irrigated with the same nutrient or nutrient saline solutions. Salinity treatment did not affect shoot dry weight of ‘Basye’s Blueberry’, ‘Little Buckaroo’, ‘Sea Foam’, and ‘Rise N Shine’. Shoot dry weight of ‘Iceberg’, ‘The Fairy’, and ‘Marie Pavie’ decreased as EC of irrigation water increased. No or little visual damage was observed in ‘Little Buckaroo’, ‘Sea Foam’, and ‘Rise N Shine’. Leaf tip burns were seen in ‘Iceberg’, ‘Marie Pavie’, ‘Basye’s Blueberry’, and ‘The Fairy’ at EC 6.4 of dS·m−1. Generally, these symptoms were less severe than those observed in Expt. 1, probably attributable partially to the shorter treatment period. Whereas shoot Na+ and Cl varied greatly among the rose cultivars, the shoot concentrations of Ca2+, K+, and Mg2+ did not. Generally, salinity-tolerant cultivars had higher shoot Na+ and Cl concentrations. In summary, in Expt. 1, ‘Belinda’s Dream’ was the most tolerant cultivar, whereas ‘Winter Sunset’ was the least tolerant followed by ‘Carefree Beauty’. In Expt. 2, ‘Iceberg’, ‘Marie Pavie’, and ‘The Fairy’ were less tolerant to salinity as compared with other cultivars, although the differences were small.

Free access

Genhua Niu, Makio Hayashi, and Toyoki Kozai

Potato (Solanum tuberosum L. cv. Benimaru) plantlets were cultured under four lighting cycles (photoperiod/dark period: 16 h/8 h, 4 h/2 h, 1 h/0.5 h, and 0.25 h/0.125 h) photoautotrophically (without sugar in the medium), and photomixotrophically (with sugar in the medium) in vitro for 28 days. Simulations of time courses of CO2 concentration in the vessel (Ci) and dry weight accumulation of the plantlets cultured photoautotrophically were conducted using a previously developed model (Niu and Kozai, 1997). While underestimation and overestimation of time courses of Ci in some treatments were observed, the simulated results of Ci and dry weight accumulation of the plantlets generally agreed with the measured ones. The difference of net photosynthetic rate response to Ci throughout the culture period was examined between the plantlets cultured photoautotrophically and photomixotrophically. Quantitative relationship between daily net photosynthetic rate (daily net production) and vessel ventilation rate per plantlet was simulated under various CO2 levels outside the vessel for given sizes of potato plantlets cultured photoautotrophically in vitro to aid appropriate CO2 enrichment and vessel design in commercial micropropagation.

Free access

Genhua Niu, Toyoki Kozai, and Chieri Kubota

A system was designed for measuring the CO2 exchange rates [net photosynthetic rate (Pn) and dark respiration rate] of in vitro plantlets in situ (in the vessel with natural ventilation). The system, excluding gas cylinders, was placed in a growth chamber so that the desired photosynthetic photon flux (PPF) and temperature could be maintained during the measurement. The CO2 concentration inside the culture vessel (Ci) was indirectly controlled by controlling the CO2 concentration outside the vessel (Co). The Pn of the plantlets was estimated based on the measured Ci and Co at steady state using a gas chromatograph according to the method described by Fujiwara et al. (1987). The performance of the system was demonstrated by measuring the in situ Pn of sweetpotato [Ipomoea batatas (L.) Lam., cv. Beniazuma] and tomato (Lycopersicon esculentum Mill., cv. Hana Queen) plantlets in vitro under a range of CO2 concentrations and PPF. The photosynthetic parameters of the Pn model (Niu and Kozai, 1997) for the plantlets were then estimated based on the measured Pn. The preliminary measurements demonstrated the potential application of the system.

Free access

Youping Sun, Joseph Masabni, and Genhua Niu

Excessive salinity in soil and irrigation water in combination with waterlogging in coastal regions can significantly reduce the productivity of many agricultural crops. To evaluate the plant growth responses to simulated seawater (SSW) flooding, seedlings of 10 vegetables (broccoli, chinese cabbage, chinese greens, cucumber, eggplant, kale, radish, ‘Red Crunchy’ radish, spinach, and tomato) were flooded with SSW at electrical conductivity (EC) of 44.0 ± 1.3 dS·m−1 or tap water at EC of 0.8 ± 0.1 dS·m−1 for 24 hours and grown subsequently for 2 weeks in a greenhouse. Chinese greens and cucumber plants died shortly after flooding with SSW, whereas other vegetables exhibited various degrees of visible salt damage. Chinese cabbage suffered the strongest reduction, whereas spinach, tomato, and eggplant exhibited the least decrease in dry weight (DW) due to SSW flooding in comparison with their perspective control. Two weeks after flooding treatment with SSW, net photosynthetic rate of broccoli, kale, spinach, and tomato was reduced by 43% to 67%, transpiration rate by 35% to 66%, and stomatal conductance (g S) by 51% to 82%. In summary, spinach, eggplant, and tomato were the most tolerant, whereas chinese cabbage, chinese greens, and cucumber were the least tolerant to SSW flooding.

Free access

Shasha Wu, Youping Sun, and Genhua Niu

To provide more species for landscapes where poor-quality irrigation water is used, salt tolerance of commonly used landscape plants should be characterized. Nine ornamental species, including six herbaceous and three woody, were irrigated with nutrient solution at electrical conductivity (EC) of 1.2 dS·m−1 (control) or saline solution at EC of 5.0 or 10.0 dS·m−1 (EC 5 or EC 10) for 8 weeks and their growth and physiological responses were determined. Although growth was reduced in orange peel jessamine (Cestrum ‘Orange Peel’) and mexican hummingbird bush (Dicliptera suberecta) as salinity increased, no obvious signs of stress or injury were observed, indicating that orange peel jessamine and mexican hummingbird bush were the most salt tolerant. Flame acanthus (Anisacanthus quadrifidus var. wrightii), rock rose (Pavonia lasiopetala), and ‘Dark knight’ bluebeard (Caryopteris ×clandonensis ‘Dark Knight’) had more growth reduction than that of orange peel jessamine and mexican hummingbird bush with minimal or no foliar damage in EC 5 and slight foliar damage in EC 10. Cardinal flower (Lobelia cardinalis) and mexican false heather (Cuphea hyssopifolia) exhibited mortality rates of 30% and 20%, severe foliar damage, and greater than 70% reduction in leaf area and dry weight in EC 10 compared with their respective controls. Although the growth reductions in butterfly blue (Scabiosa columbaria) were not as great as cardinal flower and mexican false heather, 40% of butterfly blue plants were dead with moderate foliar damage in EC 10. Therefore, cardinal flower, mexican false heather, and butterfly blue plants were considered as moderately salt sensitive. Eastern red columbine (Aquilegia canadensis) was the most salt sensitive among the species investigated with moderate foliar damage in EC 5 and all plants died in EC 10. Four out of the nine species tested had significant differences in net photosynthetic rate (Pn), stomatal conductance (g s), and/or relative chlorophyll content between the control and EC 10, and the difference varied with species. Shoot ion concentrations of the nine ornamentals were also affected by salinity levels and varied among species.

Full access

Haijie Dou, Genhua Niu, and Mengmeng Gu

Green light penetrates deeper into the plant canopy because of its high transmittance and reflectance, and may potentially increase light interception and whole-canopy photosynthesis, whereas red and blue light is absorbed primarily by upper leaves. Moreover, green light induces shade avoidance responses and regulates secondary metabolism in plants. In this study, we investigated the effects of substituting partial red and/or blue light with green light on plant growth and development in basil (Ocimum basilicum) ‘Improved Genovese Compact’ (green) and ‘Red Rubin’ (purple) plants. There were four treatments: one combined red and blue (R&B) light treatment, R76B24 [the proportion of red (R) and blue (B) light was 76% and 24%, respectively]; and three green (G) light treatments—R44B24G32, R74B16G10, and R42B13G45—with green light proportions of 32%, 10%, and 45%, respectively. The experiment was conducted in a growth room and the photosynthetic photon flux density (PPFD) of all treatments was set at 220 μmol·m−2·s−1 with a 16-h photoperiod. Plants were subirrigated as needed using a nutrient solution with an electrical conductivity (EC) of 2.0 dS·m−1 and a pH of 6.0. The net photosynthetic rate (Pn) in lower leaves was unaffected by green light treatments in green basil plants, whereas in purple basil plants it increased by 59% and 45% under treatments R44B24G32 and R74B16G10, respectively, compared with the combined R&B light. In green basil plants, treatments R44B24G32 and R42B13G45 induced stem elongation, but green light treatments showed no effects on petiole elongation, leaf expansion, leaf thickness, or plant yield. In purple basil plants, treatments R44B24G32 and R42B13G45 induced stem elongation and decreased leaf thickness and plant yield, but only the R42B13G45 treatment induced petiole elongation, and green light treatments showed no effects on leaf expansion. Concentrations of anthocyanin, phenolics, and flavonoids, and antioxidant capacity in green basil leaves showed no differences between treatments R76B24 and R44B24G32, but decreased under treatments R74B16G10 and R42B13G45. Concentrations of phenolics and flavonoids, and antioxidant capacity in purple basil leaves showed no differences between treatments R76B24 and R74B16G10, but decreased under treatments R44B24G32 and R42B13G45. Combining plant yield, nutritional values, and the working environment for growers, a white light with low green light proportion (≈10%) is recommended for basil production in a controlled environment.