Search Results

You are looking at 11 - 20 of 42 items for

  • Author or Editor: Charles F. Forney x
  • All content x
Clear All Modify Search
Full access

Charles F. Forney and David G. Brandl

Solutions of glycerol and water provide a convenient and inexpensive system to control the relative humidity (RH) in small controlled-environment chambers. The relationship between the specific gravity (SG) of a glycerol-water solution and its equilibrium RH is described by the equation SG = [-0.189 (RH) + 19.9]0.0806. Gas can be humidified by bubbling it through jars containing solutions of glycerol-water with the desired equilibrium RH. The effects of flow rate, volume of solution, temperature, and pressure on the equilibrium RH are discussed.

Free access

Charles F. Forney and Michael A. Jordan

Fresh fruits and vegetables produce ethanol when they are held in atmospheres containing low concentrations of oxygen. Ethanol concentrations in the headspace of fresh Brassica vegetables held 24 hours in nitrogen at 20°C ranged from 5 to 110 mmol·m–3. The absence of oxygen induced anaerobic respiration and the production of ethanol in these vegetables. However, other stresses, including heat and high concentrations of carbon dioxide, can also stimulate the production of ethanol in fresh fruits and vegetables held in aerobic atmospheres. Fresh heads of broccoli dipped in 52°C water had increased concentrations of headspace ethanol 2 hours after treatment when held at 20°C in air. Concentrations were 6, 160, and 490 times greater in broccoli treated for 1, 2, or 3 minutes than in nontreated controls, respectively. Fruit of three highbush blueberry cultivars held in 25% carbon dioxide for 6 weeks at 0°C had 80 to 190 times more ethanol than fruit held in air. The 25% carbon dioxide atmosphere also induced blueberries to soften and develop off-flavors. Ethanol may be a fast and easy-to-measure indicator of physiological stress in stored fresh fruits and vegetables. Monitoring induced ethanol production could identify injurious storage environments or postharvest treatments. Possible mechanisms of stress-induced ethanol production will be discussed.

Free access

Jerry C. Leyte and Charles F. Forney

A plastic tent was designed and constructed for the controlled atmosphere (CA) storage of fresh blueberries. The CA tent was suspended from pallet racking in a standard cold room and held two standard pallets stacked 6 feet high with flats of packaged blueberries. The tent was sealed with two air-tight zippers and a small water trough, resulting in an air-tight chamber that successfully maintained CA storage environments. The CA tent was easily set up and removed to allow flexibility in use of storage space. To provide efficient use of storage space, tents could be stacked two or three high on pallet racking. The tent was easily loaded and unloaded by a single person using a forklift. CA tents provide an economical alternative to traditional CA rooms for the storage of small quantities of fresh blueberries and allows greater flexibility in marketing than traditional CA storage rooms. CA tents are suitable for the storage of other fresh produce that benefits from CA environments.

Free access

Charles F. Forney and Michael A. Jordan

Methanethiol (MT) is a volatile compound responsible for the unpleasant odor evolved when fresh broccoli (Brassica oleracea L., Italica group) is held under anaerobic conditions. Inductive atmospheres can develop in storage, transportation containers, or modified atmosphere packages, resulting in reduced quality. To determine if related vegetables are capable of producing MT, 12 different vegetables from the genus Brassica were cut into ready-to-eat forms. Fifty-gram samples were sealed in 500-mL glass jars and flushed with N2. After 24 h in the dark at 20 °C, headspace samples from the jars were analyzed for MT and other volatiles. Headspace concentration of MT was greatest in broccoli florets, followed by pak choi (Brassica rapa L., Chinensis group) leaf blades, savoy cabbage (Brassica oleracea L., Capitata group), broccoflower (Brassica oleracea L., Botrytis group), and green and red cabbage (Brassica oleracea L., Capitata group). Broccoli stems, kale (Brassica oleracea L., Acephala group), Brussels sprouts (Brassica oleracea L., Gemmifera group), pak choi petioles, rutabaga (Brassica napus L., Napobrassica group) root, cauliflower (Brassica oleracea L., Botrytis group) florets, Chinese cabbage (Brassica rapa L., Pekinensis group), and kohlrabi (Brassica oleracea L., Gongylodes group) tubers produced <3% of the MT produced by broccoli florets. Green tissues appeared to have a greater capacity to produce MT than nongreen tissues. Anaerobic production of CO2 and ethanol did not relate to the vegetable's ability to produce MT. The production of dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS) were also induced by the anaerobic conditions. Green cabbage produced the greatest concentration of DMDS, followed by savoy cabbage and broccoli florets. Production of DMTS was similar to the pattern observed for MT, but DMDS production was not highly correlated with MT production.

Free access

D. Mark Hodges and Charles F. Forney

Rapidly declining levels of ascorbate (vitamin C) have been associated with advancing senescence and postharvest quality loss in spinach (Spinacia oleracea L.). To further explore the association between ascorbate metabolism and senescence, two cultivars of spinach previously shown to differ in their postharvest senescence rates were grown under controlled conditions (18 °C, 14 light: 10 dark photocycle) and harvested 6 weeks after planting. Detached leaves of `Spokane F1' (relatively fast senescence rate) and `BJ412 Sponsor'(relatively slow senescence rate) were bagged and placed in the dark at 10 °C. Samples were removed on days 0, 7, 14, 21, and 28, and analyzed for activities of L-galactono-γ-lactone dehydrogenase (GLDH), ascorbate peroxidase (ASPX), ascorbate oxidase (AAO), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR), and levels of ascorbate [reduced (AsA) and oxidized (DHA)] and malondialdehyde (MDA) (estimator of lipid peroxidation). Oxidative stress, as estimated by MDA levels, steadily increased in both spinach cultivars during storage, but increased more in `Spokane'than in `Sponsor'. GLDH activities peaked on day 14 for both cultivars and leveled off thereafter, while activities of ASPX, DHAR, and MDHAR declined during storage. ASPX activities were lower in `Spokane'than in `Sponsor'after day 21. No difference in AAO activities was noted between `Sponsor'and `Spokane'during storage. Total ascorbate concentrations declined in both cultivars on day 14 after which no further decreases were noted, while DHA/AsA ratios increased during storage. Early in the storage regime (days 0 and 7), ascorbate levels were lower in `Spokane'than in `Sponsor. GLDH activities may have increased as part of a strategy to maintain the ascorbate pool during escalating oxidative stress. However, decreased levels of ascorbate suggests that, even though ascorbate biosynthesis was increased, ascorbate was being degraded, possibly through hydrolysis of DHA to 2,3-diketogulonate. Initially lower levels of ascorbate (days 0 and 7) and lower activities of ASPX (day 28) in `Spokane' may have resulted in comparatively greater susceptibility of this cultivar to oxidative stress than `Sponsor'.

Full access

Jerry C. Leyte and Charles F. Forney

Forced-air cooling rates of highbush blueberries (Vaccinium corymbosum L.) packaged in 6-oz (177-mL) or 1-pt (473-mL) clamshell containers were affected by positions of vent holes in corrugated flats. Most rapid cooling occurred in flats with vents across the top of the flat. Additional vents aligned in front of clamshells resulted in more rapid and uniform cooling than vents placed between clamshells. Vent holes in the bottom of flats had no effect on cooling rates. Clamshells cooled more slowly in the front of the pallet where cold air entered than in the back of the pallet where cold air exited. Fruit in 6-oz clamshells cooled faster than fruit in 1-pt clamshells.

Full access

Jerry C. Leyte and Charles F. Forney

A plastic tent was designed and constructed for the controlled atmosphere (CA) storage of small quantities of fresh produce. The CA tent is suspended from pallet racking in a standard cold room and can hold two standard pallets stacked 6 feet high with produce. Tents are sealed with two air tight zippers and a small water trough, resulting in an airtight chamber that successfully maintains CA storage environments. The CA tents are easily set up and removed to allow flexibility in use of storage space. To provide efficient use of storage space tents can be stacked two or three high on pallet racking. Tents are easily loaded and unloaded by a single person using a forklift. CA tents provide an economical alternative to traditional CA rooms for the storage of small quantities of fresh produce under CA environments.

Free access

Charles F. Forney and Michael A. Jordan

`Annapolis', `Cavendish', `Honeoye', `Kent', and `Micmac' strawberry fruit (Fragaria ×ananassa Duch.) were harvested underripe (75% to 90% red) or fully ripe. Fruit were stored at 0C for 5 days followed by 2 days at 15C. Volatiles were trapped onto Tenax-GR from the headspace over fruit before and after storage and analyzed using GC-MS. Volatile esters identified in headspace included methyl and ethyl butanoate, methyl and ethyl hexanoate, methyl and ethyl 3-methylbutanoate, 3-methylbutyl acetate, hexyl acetate, and methyl 2-methylbutanoate. Headspace concentrations of volatile esters over freshly harvested strawberries averaged 1.3 and 6.8 μmol·m–3 for underripe and ripe fruit, respectively. After 7 days of storage, volatile concentrations increased in both underripe and ripe fruit to 6.3 and 12.2 μmol·m–3, respectively. There were quantitative and qualitative differences between cultivars. Total volatile concentrations were 16.0, 8.1, 5.7, 2.4, and 0.9 μmol·m–3 in the headspace over `Annapolis', `Kent', `Micmac', `Cavendish', and `Honeoye', respectively. `Annapolis' had the highest concentrations of methyl and ethyl butanoate, while `Micmac' had the highest concentrations of methyl and ethyl hexanoate. Volatile concentrations at harvest increased 5.7, 1.9, 1.7, 1.4, and 1.3 times during storage in `Kent', `Annapolis', `Micmac', `Cavendish', and `Honeoye', respectively. Results indicate that strawberry fruit continue to produce aroma volatiles after harvest.

Free access

Charles F. Forney and Michael A. Jordan

Methanethiol (MT) is a volatile compound responsible for the strong off-odor that is evolved when fresh broccoli is held under anaerobic atmospheres. Inductive atmospheres can develop in modified-atmosphere packages, resulting in reduced quality. To determine if related vegetables are capable of producing MT, 12 different vegetables from the genus Brassica were cut into ready-to-eat forms. Fifty-gram samples of these cut vegetables were sealed in 500-ml glass jars and flushed with N2. After flushing, jars were held for 24 h at 20C in the dark. Headspace samples from the jars then were analyzed for MT and other volatiles using a GC-MS> The concentration of MT was greatest in jars containing broccoli florets. Broccoli flower buds removed from florets produced 40 times more MT than peduncle and stem tissues (38.3 vs. 0.87 mmol·m–3). Headspace concentration of MT (mmol·m–3) in jars containing these different vegetables was: broccoli florets, 22.7; pak choi leaf blades, 17.8; savoy cabbage, 12.4; broccoflower, 7.5; green storage cabbage, 5.2; red cabbage, 2.7; kale, 0.81; Brussels sprouts, 0.36; pak choi petioles, 0.28; rutabaga root, 0.26; cauliflower florets, 0.18; Chinese cabbage, 0.03; and kohlrabi tubers, 0.02. In addition to MT, ethanol, dimethyl disulfide, and dimethyl trisulfide were detected in the headspace over each of the 12 vegetables. The contribution of these induced compounds to off-odor development in packaged, precut vegetables will be discussed.

Free access

Charles F. Forney and Michael A. Jordan

Heat can induce physiological changes in plant tissues, including the inhibition of broccoli senescence. Hot water treatments at 52C for 3 or more minutes may induce off-odors in fresh broccoli. The objective of this study was to identify heat-induced volatiles that may indicate physiological injury and/or be responsible for off-odors. Heads of fresh broccoli (Brassica oleracea L. Italica group cv. `Paragon') were immersed in water at 25C for 10 min (control); 45C for 10, 15, or 20 min; or 52C for 1, 2, or 3 min. Following treatment broccoli was held at 20C in the dark. Volatiles in the headspace above treated broccoli were trapped on Tenax-GR 2, 24, and 72 h after treatment and analyzed on a GC-MS. Heat treatments increased the production of ethanol, dimethyl disulfide (DMDS), dimethyl sulfide (DMS), dimethyl trisulfide (DMTS), hexenol, methyl thiocyanate, and several other unidentified compounds. Two hours after treatment, ethanol and hexenol concentrations in the headspace of all heat-treated broccoli were greater than those of the 25C/10 min controls. In the 52C/3 min-treated broccoli, headspace concentrations of ethanol, hexenol, DMDS, and methyl thiocyanate were 600-, 42-, 4-, and 4-fold greater than those of controls. After 72 h at 20C, concentrations of DMDS, DMS, and DMTS in broccoli from all six heat treatments were 10- to 200- fold, 8- to 35-fold, and 1.5- to 23- fold greater than those of controls, respectively. Concentrations of ethanol and methyl thiocyanate did not change relative to the controls during the additional 70 h at 20C. Concentrations of hexenol decreased in heat-treated broccoli during this time. The relationship of these volatiles to physiological changes and off-odor development in treated broccoli will be discussed.