Search Results

You are looking at 11 - 20 of 33 items for

  • Author or Editor: C.A. Sanchez x
  • All content x
Clear All Modify Search
Free access

C.A. Sanchez and N.M. El-Hout

Four field experiments were conducted from 1990 to 1992 on Histosols in southern Florida to compare the relative response of various types of lettuce (Lactuca sativa L.) (i.e., leaf, Boston, Bibb, romaine, and crisphead lettuce) to P fertilization. All lettuce types showed large yield and quality responses to P fertilization. Because environmental conditions affected yield potential, P rates required for optimal yield varied for lettuce types across experiments. However, with the exception of Boston, the P rates required for optimal yield were similar when averaged over all experiments. Furthermore, the relationship between relative yield and soil-test P across all seasons showed that a similar soil-test P index level was required for maximum yield of all lettuce types. Overall, the results of this study suggest that existing soil-test-based fertilizer recommendations for crisphead lettuce are adequate for other lettuce types currently grown.

Free access

B.R. Gardner and C.A. Sanchez

Lettuce is planted in the southwestern U.S. desert from September through December and harvested from November through April each year. During this period mean soil temperatures range from 7 to 30C. Lettuce produced on desert soils shows a large yield response to P. Soil solution P is replenished by desorption from the labile soil P fraction and this process is temperature sensitive. A field study was conducted over 6 years to evaluate the response of lettuce to soil solution P levels under different ambient soil temperature regimes. The soil temperatures under which lettuce was grown were varied each year by altering planting dates. Soil solution P levels were established and maintained each season using P sorption isotherm methodology. Lettuce responded to P in all experiments. Phosphorus levels required for maximum yield varied with each experiment. Soil P levels required for optimal yield were best correlated to mean soil temperatures during the last 20 days before harvest. Lettuce accumulates over 70% of its P during the heading stage of development and it is likely that during this period of rapid growth and nutrient uptake, solution P becomes limiting when soil temperatures are cool.

Full access

Charles A. Sanchez and Jeffrey. C. Silvertooth

About 33% of all irrigated lands worldwide are affected by varying degrees of salinity and sodicity. Soil with an electrical conductivity (EC) of the saturated extract >4 dS·m−1 is considered saline, but some horticultural crops are negatively affected if salt concentrations in the rooting zone exceed 2 dS·m−1. Salinity effects on plant growth are generally osmotic in nature, but specific toxicities and nutritional balances are known to occur. In addition to the direct toxic effects of Na salts, Na can negatively impact soil structure. Soil with exchangeable sodium percentages (ESPs) or saturated extract sodium absorption ratios (SARs) > 15 are considered sodic. Sodic soils tend to deflocculate, become impermeable to water and air, and puddle. Many horticultural crops are sensitive to the deterioration of soil physical properties associated with Na in soil and irrigation water. This review summarizes important considerations in managing saline and sodic soils for producing horticultural crops. Economically viable management practices may simply involve a minor, inexpensive modification of cultural practices under conditions of low to moderate salinity or a more costly reclamation under conditions of high Na.

Free access

M.A. Wilcox, C.A. Sanchez, G. Wright, and P. Brown

The majority of citrus planted in southwestern Arizona are lemons. Lemons are generally more vigorous and usually produce higher yields than other citrus cultivars. However, under water stress, fruit size will be compromised and excessive fruit drop will occur. Limited information is available that addresses the issue of irrigation frequencies and the impact on fruit sizing of lemons. A field study was initiated in 1993 evaluate the response of `'Lisbon' lemons to various flood irrigation intervals. Irrigation intervals were based on soil moisture depletion (SMD), as calculated from frequent neutron probe soil moisture measurements. Individual treatments were irrigated when total SMD was 25%, 40%, 55%, and 70%, respectively. The experiment is a completely random design with four replications. Results indicate that both the most-frequent (25% SMD) and least-frequent (70% SMD) irrigation regimes produced negative results. Overall, the first year's results indicate optimal fruit growth and yield is achieved at 40% SMD.

Free access

C.A. Sanchez, G.H. Snyder, and H.W. Burdine

Diagnosis and Recommendation Integrated System (DRIS) norms were derived for crisphead lettuce (Lactuca sativa L.) from field fertility experiments conducted over the past 20 years on mineral and organic soils in Florida. Preliminary testing indicates that DRIS diagnoses generally agree with diagnoses using the sufficiency range approach, with the advantage of predicting the degree of nutrient limitation. DRIS also appeared to correctly predict a response to K where sufficiency ranges currently used did not. Overall, DRIS appears to be a useful adjunct to the sufficiency range approach currently used to diagnose nutritional deficiencies in crisphead lettuce.

Free access

C.A. Sanchez, M. Lockhart, and P.S. Porter

Five field experiments were conducted from 1986 through 1988 to evaluate the response of radish (Raphanus sativus L.) to rate and source of P (triple superphosphate and phosphoric acid) and to rate of K (KC1) on Histosols. Marketable radish root yields increased with P fertilization when the soil tested <13 mg P/dm3 using a test for water-soluble P. No significant differences were due to P source. Results of leaf tissue analysis suggested that the critical concentration of P in radish leaves was 0.45%. Radish did not respond to K fertilization in any of the five experiments, even though preliminary soil-test K levels ranged from 20 to 102 K/dm3. Histosols used for crop production in Florida rarely test below 20 mg K/dm3; thus, radish rarely would require supplementary K fertilization for optimal yield.

Free access

L. Espinoza, C.A. Sanchez, and T.J. Schueneman

Four field experiments were conducted during two production seasons to evaluate soil-test P fertilizer recommendations for celery (Apium graveolens var. dulce) produced on Histosols, which often are linked hydrologically to environmentally sensitive wetlands, and to evaluate band placement as a strategy for improving P fertilizer-use efficiency in celery in such areas. Phosphorus was applied (broadcast or banded) at 0,50, 100,150, and 200 kg P/ha. Broadcast P was surface-applied and disked into the soil ≈ 15 cm deep 1 day before planting. Banded P was applied 5 cm below the soil surface and 5 cm to the side of each celery row. Total above-ground mass, marketable trimmed yield of celery, and yield of the larger grade sizes increased with P rate in all experiments. Band P placement was not a viable strategy for improving P fertilizer-use efficiency for celery. However, our results indicate that previous soil-test-based P fertilizer recommendations for celery were too high for the cultivars grown currently, and improved P fertilizer-use efficiency can be obtained with revised soil-test calibrations.

Free access

N.M. El-Hout, C.A. Sanchez, and S. Swanson

Potassium is often considered the nutrient element most limiting to crop production on organic soils. On Histosols in southern Florida, K2SO4, rather than KCl, is often used for lettuce (Lactuca sativa L.) production to minimize the risk of salt injury. However, recent soil-test calibration research suggests that current K fertilizer recommendations for lettuce may be too high. Four field studies were conducted from 1989 to 1991 to evaluate the response of five lettuce types to K rate and source. The five lettuce types evaluated were leaf, bibb, boston, romaine (cos), and crisphead. Two sources of fertilizer K (K2SO4 and KCl) were evaluated at rates ranging from 0 to 600 kg K ha-1. Lettuce showed a minimal or no response to K fertilization. Potassium chloride had detrimental effects on lettuce only when applied at rates in excess of those required for optimal production. These studies showed that K fertilizer recommendations for lettuce produced on Histosols in Florida can be reduced. Furthermore, KCl, a more economical source, is suitable when the K is applied at appropriate rates.

Free access

C.A. Sanchez, H.Y. Ozaki, K. Schuler, and M. Lockhart

Experiments were conducted from 1985 to 1989 to evaluate the response of radishes (Raphanus sativus L.) to N fertilization on Histosols. Three of these experiments used 15N-labeled fertilizer to evaluate the recovery of N by radishes. There was no response to N fertilization in seven of the eight experiments, even though some of them were conducted under conditions of high rainfall. The one experiment in which radish yields increased with N was conducted in a poorly drained, waterlogged field that was atypical of normal radish production fields. Recoveries of fertilizer N in the marketable radish roots averaged 19%. The results of N and 15N analysis showed that although fertilizer N was available for uptake, so was an ample amount of soil mineralized N. These results indicate that under typical growing conditions, radishes produced on Florida Histosols do not respond to N fertilization.

Free access

B.R. Gardner, R.L. Roth, and C.A. Sanchez

A study was conducted during four seasons to evaluate the nutrient requirements of `Valencia' oranges converted from flood to a pressurized spray irrigation system. The experiment was a 3×2×2 factorial with 3 N rates (0.34, 0.68, and 1.36 kg/tree/year), 2 P rates (0 and 0.11 kg/tree/year) and with and without added micronutrients (Fe, Zn, Mn, and Cu). There were no growth or yield responses to micronutrients. Phosphorus fertilization increased fruit yield, improved juice quality, and reduced peel thickness. There were trends for N to reduce juice quality and increase peel thickness when P fertilizer was not added. Tree growth increased by N fertilization only the first season after conversion. Fruit yield also increased by N but only when P was added. Leaf tissue N concentrations increased with time during the first two years within N treatments. These data suggest that the higher rates of N may only be needed initially after conversion as the tree roots adapt to the new irrigation system.