Search Results

You are looking at 11 - 16 of 16 items for

  • Author or Editor: Adam Dale x
  • All content x
Clear All Modify Search
Free access

Adam Dale, Stoyan Prigozliev, George Chu*, and Selim Kermasha

`Seascape' strawberries were harvested and treated with various concentrations of riboflavin and placed on a lab bench for 0, 1, 2, 3, or 4 days, respectively, in a cold room at 4 °C. After each day, samples were taken and stored in a freezer at -20 °C until they were evaluated for anthocyanins content. Both exogenously applied riboflavin and storage time increased cyaniding 3-glucoside and pelargonidin 3-glucoside in the strawberry fruits. This result indicates that riboflavin could be used to increase red color in strawberries destined for processing as well as be included as a vitamin supplement in the processed products.

Free access

Calvin Chong, Glen Lumis, Peter Purvis, and Adam Dale

Rooted cuttings of `Antonovka' apple, `Lynwood Gold' forsythia, double-flowered kerria, common ninebark, `Goldfinger' potentilla, and `Red Prince' weigela were grown in 2-gal (6-L) nursery containers filled with 1:1 (by volume) of waste compost and composted pine bark, under three fertilizer regimes: 1) liquid nutrients [target concentrations in ppm (mg.L-1): NH4-N, 13; NO3-N, 100; P, 28; K, 120; Ca, 92; Mg, 13; Fe, 1.3; Mn, 0.27; Zn, 0.23; Cu, 0.05; B, 0.22; Mo, 0.05; Na, <50; Cl, <50; and SO4 <300] delivered and recycled twice per day via a computer-controlled multifertilizer injector; 2) same nutrient formula and concentration rate delivered fresh via the injector but without recycling; and 3) Nutryon (Polyon) 17-5-12 controlled-release fertilizer incorporated into the medium at a rate of 11 lb/yd3 (6.5 kg·m-3). With recycled liquid nutrients, all species grew the same or more than with nonrecycled nutrients, and generally the poorest growth was with controlled-release fertilizer. Foliar concentrations of K (all species), N (all species), P (forsythia, kerria, potentilla, and weigela), and Mn (forsythia, potentilla, and weigela) were higher in plants supplied with recycled and/or nonrecycled nutrients than in those supplied with controlled-release fertilizer, while foliar concentrations of Ca (ninebark and kerria) and Mg (apple, kerria, ninebark, potentilla, and weigela) were lower. Compared to nonrecycled liquid nutrients, the amounts of individual recycled nutrients were reduced by (percentage in brackets): NH4-N (30), NO3-N (78), P (76), K (46), Ca (93), Mg (96), Fe (52), Mn (43), Zn (55), Cu (60), B (83), and Mo (66).

Free access

Adam Dale, Don C. Elfving, and Craig K. Chandler

In greenhouse and field studies, benzyladenine (BA) and gibberellic acid (GA3) applied together as a foliar spray increased runner production in dayneutral strawberries (Fragaria ×ananassa Duch.) but not when applied separately. Runner production increased linearly with increased BA concentration to 1800 mg·L–1. At high dosages, GA3-treated plants produced elongated internodes that, in the field, led to fewer daughter plants. In Florida, daughter plants derived from plants sprayed with the growth regulators increased yield by up to 10% in fruiting experiments. To induce runnering in the field and greenhouse, a treatment with BA at 1200 mg·L–1 and GA3 at 300 mg·L–1 is recommended. Chemical names used: N-(phenylmethyl)-1H-purine-6-amine (benzyladenine); gibberellic acid A3; gibberellic acids A4 and A7.

Free access

James F. Hancock, Chad E. Finn, James J. Luby, Adam Dale, Pete W. Callow, and Sedat Serçe

The germplasm base of strawberries is restricted. The major cultivated strawberry species, Fragaria ×ananassa, originated ≈250 years ago when South American F. chiloensis subsp. chiloensis forma chiloensis and North American F. virginiana subsp. virginiana accidentally hybridized in European gardens. Since that time, only a handful of native clones have been used by breeders. As a novel way to expand the germplasm base of the strawberry, we preselected native clones of F. virginiana and F. chiloensis for a wide range of horticulturally important characteristics and then reconstructed F. ×ananassa by crossing superior clones of each. Before crossing between species, we undertook one round of selection within species to maximize diversity. Reconstruction appeared to be an effective method of strawberry improvement, because superior families and individuals were identified that had outstanding vigor, high productivity, seed set, fruit color, and firmness. None of the fruit were of commercial size, but one reconstruction family, FVC 11 [(F. virginiana Frederick 9 × LH 50-4) × (F. chiloensis Scotts Creek × 2 MAR 1A)], had individuals with fruit weights of almost 20 g.

Free access

Adam Dale, Patrick P. Moore, Ronald J. McNicol, Thomas M. Sjulin, and Leonid A. Burmistrov

Pedigrees of 137 red raspberry (Rubus idaeus L.) varieties released throughout the world since 1960 were used to calculate: 1) the genetic contribution of founding clones to these varieties; 2) genetic relatedness among them; and 3) their inbreeding coefficients. Fifty founding clones contributed to the pedigrees of these varieties with a mean genetic contribution ranging from <0.1% to 21%. Varieties were clustered according to the genetic contribution into groups strongly related to geographical origin. Varieties developed in the former USSR and derived from `Novost Kuzmina' formed a distinct cluster. The remaining varieties were clustered in groups based mainly on whether they were of North American or European origin. Varieties were clustered also on the basis of Wright's coefficient of relationship-a measure of genetic relatedness. Cluster groups were related to their geographical origin and the varieties within the groups could be traced to similar intermediate parents. Inbreeding coefficients ranged from 0.0 to 0.625 and were related, in part, to the numbers of generations of controlled hybridization from common ancestors. The British group, with the largest number of generations of breeding, had a low mean inbreeding coefficient, indicating that inbreeding can be minimized with attention to the mating system. Strategies are suggested for maintaining and increasing the genetic diversity in the world's red raspberry breeding populations.

Full access

Amy Fulcher, Anthony LeBude, Sarah A. White, Matthew R. Chappell, S. Christopher Marble, J.-H (J.C.) Chong, Winston Dunwell, Frank Hale, William Klingeman, Gary Knox, Jeffrey Derr, S. Kris Braman, Nicole Ward Gauthier, Adam Dale, Francesca Peduto Hand, Jean Williams-Woodward, and Steve Frank

Extension and research professionals in the southeastern United States formed the Southern Nursery Integrated Pest Management working group (SNIPM) to foster collaboration and leverage resources, thereby enhancing extension programming, increasing opportunity, and expanding the delivery of specialized expertise to nursery crop growers across a region. Building a productive and lasting working group requires attracting a group of research and extension faculty with complementary expertise, listening to stakeholders, and translating stakeholder needs into grant priorities to help solve problems, all hallmarks of effective teamwork principles. SNIPM has now grown to include 10 U.S. states and 11 institutions and has been awarded seven grants totaling $190,994 since 2009. A striking benefit of working group membership was observed over time: synergy. Greater awareness of individual expertise among SNIPM members, each of whom were focused on different aspects of the nursery production system stimulated multistate extension publications, electronic books (eBooks), mobile device applications (apps), popular press articles, and spin-off research projects when separate foci were combined and directed toward complex challenges. Deliverables achieved from this faculty collaboration include nine peer-reviewed publications, four manuals and books and 23 book chapters, and a combined total of 11 abstracts, conference proceedings and extension publications. To date, the return on investment for SNIPM is one deliverable produced to every $2265.89 in grant funding. SNIPM has also been honored with multiple American Society for Horticultural Science publication awards as well as the Southern Region Integrated Pest Management Center Bright Idea Award for the quality and originality of their project outputs. Continuing to work together toward common goals that bridge technology and serve the nursery industry while supporting each individual member’s program will be crucial to the long-term success of this working group.