Search Results

You are looking at 1 - 10 of 353 items for :

  • Journal of the American Society for Horticultural Science x
Clear All

mechanisms of resistance to the corn earworm, including husk thickness, husk texture, and presence or absence of flag leaves ( Collins and Kempton, 1917 ). Longer husk extension past the ear tip has been proposed as a resistance mechanism either by increasing

Free access

because increasing reports of Bt resistance indicate a limited lifespan for one of their main management tools ( Reisig and Reay-Jones, 2015 ; Tabashnik and Carriere, 2015 ; Tabashnik et al., 2009 ). Husk traits (e.g., husk extension past the ear tip

Open Access

photon flux density [TPFD (400–800 nm)] at the end of the day (day extension) or in the middle of the night (night interruption) creates a sufficiently short skotoperiod that inhibits flowering. Light-emitting diode (LED) lamps that primarily emit red [R

Open Access

Plastics that selectively reduce the transmission of far-red light (FR, 700 to 800 nm) reduce extension growth of many floricultural crops. However, FR-deficient (FRd) environments delay flowering in some long-day plants (LDPs), including `Crystal Bowl Yellow' pansy (Viola ×wittrockiana Gams). Our objective was to determine if FR light could be added to an otherwise FRd environment to facilitate flowering with minimal extension growth. In one experiment, plants were grown under a 16-hour FRd photoperiod, and FR-rich light was added during portions of the day or night. For comparison, plants were also grown with a 9-hour photoperiod [short-day (SD) control] or under a neutral (N) filter with a 16-hour photoperiod (long day control). Flowering was promoted most (i.e., percent of plants that flowered increased and time to flower decreased) when FR-rich light was added during the entire 16-hour photoperiod, during the last 4 hours of the photoperiod, or during the first or second 4 hours after the end of the photoperiod. In a separate experiment, pansy was grown under an FRd or N filter with a 9-hour photoperiod plus 0, 0.5, 1, 2, or 4 hours of night interruption (NI) lighting that delivered a red (R, 600 to 700 nm) to FR ratio of 0.56 (low), 1.28 (moderate), or 7.29 (high). Under the N filter, the minimum NI duration that increased percent flowering was 2 hours with a moderate or low R:FR and 4 hours with a high R:FR. Under the FRd filter, 2 or 4 hours of NI lighting with a moderate or low R:FR, respectively, was required to increase percent flowering, but a 4-hour NI with a high R:FR failed to promote flowering. Pansy appears to be day-neutral with respect to flower initiation and a quantitative LDP with respect to flower development. The promotion of reproductive development was related linearly to the promotion of extension growth. Therefore, it appears that in LDPs such as pansy, light duration and quality concomitantly promote extension growth and flowering, and cannot readily be separated with lighting strategies.

Free access

For many long-day plants (LDP), adding far red light (FR, 700 to 800 nm) to red light (R, 600 to 700 nm) to extend the day or interrupt the night promotes extension growth and flowering. Blue light (B, 400 to 500 nm) independently inhibits extension growth, but its effect on flowering is not well described. Here, we determined how R-, FR-, or B-deficient (Rd, FRd, or Bd, respectively) photoperiods influenced stem extension and flowering in five LDP species: Campanula carpatica Jacq., Coreopsi ×grandiflora Hogg ex Sweet, Lobelia ×speciosa Sweet, Pisum sativum L., and Viola ×wittrockiana Gams. Plants were exposed to Rd, FRd, Bd, or normal (control) 16-hour photoperiods, each of which had a similar photosynthetic (400 to 700 nm) photon flux. Compared with that of the control, the Rd environment promoted extension growth in C. carpatica (by 65%), C. ×grandiflora (by 26%), P. sativum (by 23%), and V. ×wittrockiana (by 31%). The FRd environment suppressed extension growth in C. ×grandiflora (by 21%), P. sativum (by 17%), and V. ×wittrockiana (by 14%). Independent of the R: FR ratio, the Bd environment promoted stem extension (by 10% to 100%) in all species, but there was little or no effect on flowering percentage and time to flower. Extension growth was generally linearly related to the incident wide band (100 nm) R: FR ratio or estimated phytochrome photoequilibrium except when B light was specifically reduced. A high R: FR ratio (i.e., under the FRd filter) delayed flower initiation (but not development) in C. carpatica and C.×grandiflora and inhibited flower development (but not initiation) in Vwittrockiana. Therefore, B light and the R: FR ratio independently regulate extension growth by varying magnitudes in LDP, and in some species, an FRd environment can suppress flower initiation or development.

Free access

The effectiveness of cool-white fluorescent, high-pressure sodium, incandescent, and metal halide lamps for inducing flowering through daylength extensions in Campanula carpatica Jacq. `Blue Clips', Coreopsis grandiflora Hogg ex Sweet `Early Sunrise', and Coreopsis verticillata L. `Moonbeam' was compared. Lighting was delivered as a 7-hour day extension with photosynthetic photon flux (PPF) ranging from 0.05 to 2.0 μmol·m-2·s-1 following a 9-hour natural daylength. Threshold irradiance values for flowering ranged from <0.05 to 0.4 μmol·m-2·s-1, depending on species. Saturation irradiance values for Campanula carpatica `Blue Clips' and C. grandiflora `Early Sunrise' were between 0.2 ± 0.2 and 0.7 ± 0.5 μmol·m-2·s-1, and did not differ between lamps. An irradiance of 1.0 μmol·m-2·s-1 from any lamp was adequate for flowering in Coreopsis verticillata `Moonbeam'. Time to flower at irradiances above the saturation points did not differ significantly between lamp types for all species tested. Campanula carpatica `Blue Clips' and Coreopsis grandiflora `Early Sunrise' plants had significantly longer stems under incandescent lamps than in any other treatment. Coreopsis verticillata `Moonbeam' plants grown under cool-white fluorescent lamps had stems ≈10% longer than those grown under high-pressure sodium or incandescent lamps.

Free access

`Candy Sunblaze' and `Red Sunblaze' miniature roses (Rosa L. sp.), were grown at several temperatures. The phenological events of budbreak (BB), visible flower bud (VB), and open flower (OF) were recorded daily. Based on these events, phenophases from BB to VB (BB:VB), from VB to OF (VB:OF), and from BB to OF (VB:OF) were defined. Daily rates of development to complete a phenophase increased with temperature between 13.6 and 27 °C. For `Candy Sunblaze', the rate of increase changed to a smaller slope beyond 25 °C. A piecewise linear regression change point model was fitted to each dataset. The base temperature (Tb) and the temperature at which the nonlinearity (Ti) occurred could then be determined. Tb for the phenophase BB:OF was 9.5 °C for `Candy Sunblaze' and 8.1 °C for `Red Sunblaze'. Ti for `Candy Sunblaze' was 24.9 °C for BB:VB and 25.6 °C for the phenophase BB:OF. The resulting point of change in rate of development prompted a modification of the traditional thermal unit formula. To complete the phenophase BB:OF using the modified formula, 479 degree days (°Cd) were predicted necessary for `Candy Sunblaze' and 589 °Cd for `Red Sunblaze'. Predicted time of events was compared with observed values. Subdividing BB:OF into BB:VB and VB:OF and using their respective Tb and thermal units summations (TU) reduced the average prediction error from 1.9 to 1.8 days for `Candy Sunblaze' and from 2.4 to 1.5 days for `Red Sunblaze'. In addition to single plant observations, phenological observations and thermal units were determined for pots with four plants to simulate commercial greenhouse crop production. Subdividing BB:OF into BB:VB and VB:OF and using their respective Tb and TU accumulations, reduced OF prediction errors on a crop basis for `Red Sunblaze', but was ineffective for `Candy Sunblaze'.

Free access

Two cultivars of tulip (Tulipa gesneriana L.) were used to check the effect of trehalose-feeding on longevity of vase life. `Oxford' plants were grown from bulbs, and trehalose-fed cut flowers were compared with the intact plants grown in pots. `Pink Diamond' flowers were obtained commercially as cut flowers from the market, and trehalose-feeding was examined by using only flower parts. In both cultivars of plants, it was confirmed that trehalose-feeding enhanced longevity of the vase life significantly at room temperature. Additionally, mechanisms of prolonging the vase life with trehalose-fed flowers were studied by comparing the water status in the zone of elongation of tulip tepals when their growth rates were modified with different treatments. In the elongating region of tulip tepals, cell elongation rates were linearly correlated to sizes of the growth-induced water potential regardless of treatments. It was found that trehalose-feeding reduced the hydraulic conductance, resulting in a decrease in cell elongation rates. Also, trehalose helped to maintain turgor of tepal cells for longer periods. Furthermore, trehalose enhanced pigmentation in tepals, and thus, trehalose is believed to have had a role in altering the metabolism in elongating cells and in reducing hydraulic conductivity in membranes.

Free access

Abstract

The pistachio (Pistacia vera L.), characteristically a biennial bearer, produces its most extensive shoot growth in years of heavy crop production. Whereas levels of total sugars in bark and wood of bearing and nonbearing branches were similar throughout the year, starch levels tended generally to be higher in nonbearing than in bearing branches. Consequently, nonbearing branches one year gave rise to heavy crops the next and, beacuse of greater quantities of reserve foods, also produced extensive shoot growth. Bearing branches of that same year, .however, produced few or no nuts the next and, because of lesser quantities of reserve foods, produced markedly less shoot growth. No relationship between total nitrogen level and shoot growth or fruiting was evident.

Open Access

Abstract

Detached shoots of double-flowered peach [Prunus persica (L.) Batsch] selections Fla. 6-1 and Fla. 0-5 were successfully opened in floral solutions containing 1 to 10% sucrose in deionized water. Addition of 8-hydroxyquinoline citrate (8-HQC), gibberellic acid (GA3), or 6-benzylaminopurine (BA) to solutions did not extend vase life. Solution uptake rate decreased over the 8-day life of the shoots and was influenced by solution molarity. Xylem plugging by pectic-type materials increased with time in solution. Addition of 1% ethanol to the floral solution hastened time of first opening, decreased the extent of xylem plugging, and extended vase life. Ethanol at 2% extended vase life and increased solution uptake rate over solutions containing sucrose alone.

Open Access