Search Results

You are looking at 1 - 10 of 3,382 items for :

  • HortScience x
Clear All

, enzyme activity and pericarp characteristics, the shelf life of chestnuts is very limited ( Correia et al., 2009 ). Therefore, chestnuts are frozen, cold stored, or dried to extend their storage period. However, the nuts have a high moisture content and

Free access
Authors: and

Differences in the field emergence of seed lots with high laboratory germination or in germination after storage are referred to as seed vigor ( Dornbos, 1995 ; TeKrony, 2003 ), a concept that comprises various aspects of quality and indicates

Free access

decrease the quality caused by temperature and light stress. Providing light during storage could extend the storability of seedlings of many horticultural species, even at very low light intensity ( Justus and Kubota, 2010 ; Kubota et al., 2002 ; Park

Free access

extended storage and marketing periods. However, for a variety of known and unknown reasons, successful storage of fresh cranberries has been variable and fruit loss is often excessive. Unlike most fruit, the optimum conditions for the storage of fresh

Free access

The objective of this research was to evaluate the effects of vacuum cooling and temperature on the quality and storage life of mung bean sprouts (Vigna radiata L. Wilczek). Sprouts in micro-perforated bags were either not precooled or vacuum cooled to 9, 6, or 3 °C, and stored for 7 days at 1, 3, or 6 °C. Vacuum-cooled bean sprouts lost more weight than sprouts not precooled, and the weight loss was greater when the sprouts were cooled to lower temperatures. However, the total loss never exceeded 5% and no apparent signs of shrivel were observed. Vacuum cooling resulted in greater product freshness after 4 days of storage, but the effect was nonsignificant after 7 days. Storage temperature had greater influence on bean sprout quality than did cooling temperature, with greater freshness and whiter hypocotyls at the lower temperatures. However, blackening of cotyledons increased as the storage temperature decreased.

Free access

Abstract

Prestorage treatments of 10, 20, and 40% CO2 for 3 and 7 days at 21°C significantly reduced stem-end rind breakdown in grapefruit (Citrus paradisi Macf.) held at 4.5° for 8 and 12 weeks. Three days’ exposure to CO2 was as effective as 7 days’ exposure; however, 20 and 40% concentrations of CO2 were significantly more effective in reducing stem-end rind breakdown than was 10% CO2. Fruit stored continuously at 4.5° in air or that exposed to 21° in an air prior to storage at 4.5° had significantly more stem-end rind breakdown than that exposed to CO2.

Open Access

Mature 'Barhi' dates (Phoenix dactylifera L.) were stored in air or under controlled atmosphere (CA) storage conditions with 5%, 10%, or 20% carbon dioxide concentrations (balance air) during storage at 0 °C. CA conditions extended date storability by maintaining fruit quality. Fruit quality was maintained for 26 weeks when stored in 20% CO2, 17 weeks in both 5% and 10% CO2, and 7 weeks in air. Treatment with 20% CO2 maintained fruit color, firmness, SSC%, total sugar content, and total tannins. CO2 treatment also reduced degradation of caffeoylshikimic acid (CSA), which is one of the major phenolic compound of date fruit. This study indicates that 'Barhi' dates could be stored under CA conditions in cold storage with good eating quality for 17 to 26 weeks.

Free access

Abstract

Methods were investigated to control weight loss and sprouting of stored ginger rhizome (Zingiber officinale Rosc), including waxing, sprout inhibitors, and gamma irradiation. Rhizomes stored for 3 months at 22°C and 70% RH lost about 20% weight. Waxing of the rhizome did not reduce water loss. Some wax treatments increased the number and length of sprouts. Preharvest application of maleic hydrazide significantly increased the number and reduced the length of sprouts. Postharvest CIPC application significantly reduced the length of sprouts. Vacuum infiltration increased the effectiveness of CIPC in reducing sprout length. Gamma and X-ray irradiation also reduced sprout number and length. Minimum doses of gamma radiation for sprout control was 25 Gy and 120 to 150 Gy for X-ray irradiation if the rhizome was stored for more than 3 months at 22°. A higher dose of irradiation (500 Gy) was required if complete sprout growth control was needed for storage periods <3 months at 22°. Suberization occurred during curing at 22°, but the suberin layer did not completely protect the cut surface. Chemical name used: isopropyl n-(3 chlorophenyl)-carbamate (CIPC).

Open Access

173 WORKSHOP 29 Seed Storage

Free access

92 POSTER SESSION 10 (Abstr. 105–119) Postharvest Physiology/Storage/Food Science Tuesday, 25 July, 1:00–2:00 p.m.

Free access