Search Results

You are looking at 1 - 10 of 38 items for :

  • "carbon to nitrogen ratio" x
Clear All

In the commercial production of phalaenopsis orchids, the cultivation time after deflasking is used to describe the plant age and maturity. Carbon-to-nitrogen (C/N) ratio is often used as an indicator of plant growth and flowering potential. High C/N ratios are considered to promote reproductive growth, and low C/N ratios are associated with the early vegetative growth or even inhibiting flowering. This study investigated how plant age and maturity affected flowering ability and flower quality of phalaenopsis and their relationship to C/N ratio. The plant materials of various ages were the purple, small-flowered Phalaenopsis Sogo Lotte ‘F2510’ and white, large-flowered P. Sogo Yukidian ‘V3’, which were 2 to 7 months and 10 to 20 months after deflasking, respectively. Plants were placed under 25/20 °C for 4 months to force flowering and investigate the flowering-related parameters. The leaf C/N ratio of both varieties increased in general with the increase of plant age. The spiking (flower-stalk emergence) rate of P. Sogo Lotte ‘F2510’ 2 months after deflasking was only 42%, which indicates that these plants were not completely out of their juvenile phase, whereas that of those 3 to 7 months after deflasking was 100%, indicating that plants had acquired full flowering ability. No linear correlation was found between the C/N ratio and days to spiking, to first visible bud, to first flower open, and to 90% flower opening in the white, large-flowered P. Sogo Yukidian ‘V3’. However, there was a positive correlation between the C/N ratio and inflorescence length, flower-stalk diameter, first flower diameter, and flower count. Thus, the C/N ratio is feasible to be used as an indicator for assessing the flowering quality in phalaenopsis.

Open Access

.5, 5.0, and 7.5 m m N, respectively ( Fig. 5 ). Fig. 5. Root nitrogen content (RN), root carbon content (RC), root carbon to nitrogen ratio (R-C:N), and root nitrogen use efficiency (RNUE) as affected by 0-, 0.5-, 1.0-, 2.5-, 5.0-, and 7.5-m m

Free access

Every autumn an abundance of leaves from various species of shade trees [e.g., oak (Quercus sp.), maple (Acer sp.)] are collected from urban landscapes. In 1988, shade tree leaves were banned from landfills and combustion facilities in New Jersey because it was an unsustainable practice. Composting and mulching leaves and using them as a resource was proposed. The purpose of this review is to summarize studies of mulching and amending soils with shade tree leaves and their potential to benefit agricultural production. Research sponsored by New Jersey Agricultural Experiment Station on soils and crops found that land application of shade tree leaves was beneficial for building soil organic matter content, protecting against erosion, and controlling weeds when used as a mulch. In general, crop yields and quality were improved with leaf mulch. Collected shade tree leaves on average have a relatively high carbon-to-nitrogen (N) ratio and the potential to cause a temporary deficiency of soil N availability. However, with good agronomic practices and well-timed N fertilization, crops perform well after shade tree leaves have been applied without increasing the recommended N fertilizer application rate.

Open Access

lamps from 0600 hr to 2000 hr daily. Cation exchange capacity, carbon-to-nitrogen ratio, particle size distribution, and bulk density. Cation exchange capacity, C:N ratio, particle size distribution, and BD were determined for five treatments: non

Free access

, electrical conductivity (EC), total nitrogen (N), carbon-to-nitrogen ratio (C:N), and inorganic N levels ( -N and -N) in the substrate at sampling events during an 8-week greenhouse experiment. Means (n = 5) among treatments within a sampling week not

Free access
Author:

In a 2-year study, the decomposition rates (changes in carbon to nitrogen ratio) of two kinds of sawdust used for blueberry production were determined. The effects of sawdust age and nitrogen application rates on carbon to nitrogen ratio (C:N ratio) of two sawdust types were evaluated. When nitrogen was not applied, the C:N ratio in fresh and aged sawdust decreased 30% and 10% respectively over a 1-year period, indicating fresh sawdust decomposed faster than aged sawdust when used as a surface mulch. However, the C:N ratios between soils amended with aged and fresh sawdust were similar when no nitrogen was added, suggesting the age of sawdust does not affect the decomposition rate once the sawdust is incorporated into the soil. It was found that two nitrogen application rates (150 kg·ha-1 vs. 50 kg·ha-1) had an equal affect on the C:N ratio of both sawdust types. Nitrogen application had no affect on the C:N ratio of both sawdust types when both sawdust were used as soil amendments. Clearly, the decomposition rates of the sawdust were influenced by sawdust age and nitrogen application rates.

Free access

Analytical determination and confirmation of minimum compost processing times and minimum curing times can aid commercial growers in selecting compost materials that should give them more reliable and consistent results in their operations. Five-cubic-yard volumes of yard-trimmings were assembled into three 1.25-cubic-yard compost piles at 60-day intervals. At the conclusion of the experiment, there were three piles each of compost of the following ages: 10 months, 8 months, 6 months, and 2 months. Compost was collected from each pile and screened through a 0.75-inch screen. Bulk density, water-holding capacity, air-filled porosity, carbon to nitrogen ratio, electrical conductivity, and ATPase activity were determined on samples from each reference compost pile. A bioassay using beans also was performed. These data will be presented.

Free access

The ability of mycorrhizal and nonmycorrhizal `Elliott' highbush blueberry (Vaccinium corymbosum L.) plants to acquire soil N under different preplant organic soil amendment regimes (forest litter, rotted sawdust, or no amendment) was investigated in a field experiment using 15N labeled (NH4)2SO4. Plants inoculated with an ericoid mycorrhizal isolate, Oidiodendron maius Dalpé (UAMH 9263), had lower leaf 15N enrichment and higher leaf N contents than noninoculated plants but similar leaf N concentrations, indicating mycorrhizal plants absorbed more nonlabeled soil N than nonmycorrhizal plants. Mycorrhizal plants produced more plant dry weight (DW) and larger canopy volumes. The effect of preplant organic amendments on the growth of highbush blueberry plants was clearly demonstrated. Plants grown in soil amended with forest litter produced higher DW than those in either the rotted sawdust amendment or no amendment. Plants grown in soils amended preplant with sawdust, the current commercial recommendation, were the smallest. Differences in the carbon to nitrogen ratio were likely responsible for growth differences among plants treated with different soil amendments.

Free access

Using organic wastes as agricultural amendments is a productive alternative to disposal in landfills, providing nutrients for plant growth and carbon to build soil organic matter. Despite these benefits, a large fraction of organic waste is sent to landfills. Obstacles to the adoption of wastes as sources of plant nutrients include questions about harmful effects to crops or soils and the wastes’ ability to produce satisfactory yields. We compared six organic waste amendments with a mineral fertilizer control (CN) to determine effects on soil quality, soil fertility, crop quality, and crop yield in 2013 and 2014. Waste amendments were applied at a rate sufficient to supply 10,000 kg organic C/ha over two seasons, and mineral fertilizer was applied to control plots to provide 112 kg-N/ha/yr. The experiment was laid out in a randomized block design with four replicates and three crops: sweet corn (Zea mays L. cv. Applause, Brocade, and Montauk), butternut squash (Cucurbita moschata Duchesne cv. JWS 6823), and potatoes (Solanum tuberosum L. cv. Eva). Amendment with biosolids/yard waste cocompost (BS), dehydrated restaurant food waste (FW), gelatin manufacturing waste (GW), multisource compost (MS), paper fiber/chicken manure blend (PF), and yard waste compost (YW) did not have a negative impact on soil moisture, bulk density, electrical conductivity (EC), or the concentration of heavy metals in soil or plant tissue. Our results indicate potential uses for waste amendments including significantly raising soil pH (MS) and increasing soil organic matter [OM (YW and BS)]. The carbon-to-nitrogen ratio (C:N) of waste amendments was not a reliable predictor of soil inorganic N levels, and only some wastes increased potentially mineralizable nitrogen (PMN) levels relative to the control. Plots amended with BS, FW, and GW produced yields of sweet corn, butternut squash, and potatoes comparable with the control, whereas plots amended with YW, PF, and MS produced lower yields of sweet corn, squash, or both, although yields for potatoes were comparable with the control. In addition, the marketability of potatoes from PF plots was significantly better than that of the control in 2014. None of the wastes evaluated in this study had negative impacts on soil properties, some provided benefits to soil quality, and all produced comparable yields for at least one crop. Our results suggest that all six wastes have potential to be used as sources of plant nutrients.

Free access

This study evaluated the potential for using cowpeat, a composted dairy manure, as a component of container substrates for foliage plant propagation. Using a commercial formulation (20% perlite and 20% vermiculite with 60% Canadian or Florida peat based on volume) as controls, peat was replaced by cowpeat at 10% increments up to 60%, which resulted in a total of 14 substrates. Physical and chemical properties such as air space, bulk density, container capacity, total porosity, pH, carbon-to-nitrogen ratio, and cation exchange capacity of the cowpeat-substituted substrates were largely similar to those of the respective control. However, the electrical conductivity (EC) increased with the increased volume of cowpeat. The 14 substrates were used for rooting single-node cuttings of golden pothos (Epipremnum aureum) and heartleaf philodendron (Philodendron scandens ssp. oxycardium) and three-node cuttings of ‘Florida Spire’ fig (Ficus benjamina) and germinating seeds of sprenger asparagus (Asparagus densiflorus) in a shaded greenhouse. All cuttings rooted in the 14 substrates, and the resultant shoot and root dry weights of golden pothos and ‘Florida Spire’ fig 2 months after rooting did not significantly vary across seven Canadian peat- or Florida peat-based substrates. Shoot dry weights of heartleaf philodendron were also similar across substrates, but the root dry weight produced in the Canadian peat-based control substrate was much greater than that produced in the substrate containing 60% cowpeat. Root dry weight and root length produced in the Florida peat-based control substrate were also significantly greater than those produced in substrates substituted by 60% cowpeat. These results may indicate that cuttings of golden pothos and ‘Florida Spire’ fig are more tolerant of higher EC than those of heartleaf philodendron, as the substrate with 60% cowpeat had EC ≥ 4.16 dS·m−1. Seed germination rates of sprenger asparagus from cowpeat-substituted Canadian peat-based substrates were greater than or comparable to those of the control substrate. Seed germination rates were similar across the seven Florida peat-based substrates. The root-to-shoot ratios of seedlings germinated from both control substrates were significantly greater than those germinated from substrates substituted by cowpeat. This difference could be partially explained by the higher nutrient content in cowpeat-substituted substrates where shoot growth was favored over root growth. Propagation is a critical stage in commercial production of containerized plants. The success in using up to 60% cowpeat in rooting and seed germination substrates may suggest that cowpeat could be an alternative to peat for foliage plant propagation.

Full access