Search Results

You are looking at 1 - 10 of 99 items for :

  • "bitter pit" x
  • HortScience x
Clear All

‘Honeycrisp’ is one of the top five apple cultivars in the United States, but consistent production of high-quality fruit is challenging. One negative characteristic of the cultivar is its susceptibility to bitter pit. The severity of bitter pit

Open Access

‘Honeycrisp’ is a popular apple cultivar, but it is susceptible to several postharvest disorders, including bitter pit (Al Shoffe et al., 2016; DeEll et al., 2016 ; Watkins et al., 2004 ). Several studies showed that bitter pit development is

Open Access

Calcium application trials were undertaken in a 'Braeburn' apple (Malus ×domestica Borkh.) orchard with a history of bitter pit development at harvest. In 2000, an early season calcium chloride application strategy was compared with the unsprayed control and a late season application strategy. From 2001–03, the assessment of timing of calcium chloride sprays was extended by comparing effects of five weekly sprays applied during the growing season either early, middle, or late season. Other Ca application strategies tested included sprays of acidified calcium carbonate suspensions and soil application of calcium thiosulphate. In the first experiment, early application of calcium chloride reduced the occurrence of bitter pit at harvest and after 3 months cold air storage, despite having low harvest fruit Ca concentrations. Late sprayed fruit had a higher incidence of bitter pit. In the second experiment, the later calcium chloride was sprayed in the growing season, the higher the fruit Ca concentration at harvest. Despite this, no bitter pit was measured at harvest for 2 years for early and midseason calcium chloride spray regimes. In 2003, when Ca disorders were severe and fruit large, bitter pit was observed despite early season calcium chloride sprays. Soil calcium thiosulphate application and foliar sprays of acidified calcium carbonate suspensions failed to meaningfully augment harvest fruit Ca concentrations and affect bitter pit incidence.

Free access

The high susceptibility of ‘Honeycrisp’ to bitter pit is not well understood. Crassweller and Smith (2016) found levels of Ca in foliar tissue were lower in ‘Honeycrisp’ than in ‘Cameo’. Cheng (2016) reported lower fruit levels of Ca in

Free access

Repeated preharvest applications of methyl jasmonate (MJ) to 'Fuji' apple [Malus sylvestris var. domestica (Borkh.) Mansf.] fruit were evaluated for impacts on peel color, size, fruit finish, and maturation. MJ treatments at 2 week intervals began 48 days after full bloom (DAFB) (early season) or 119 DAFB (late season) and fruit were harvested 172 DAFB. MJ treatment stimulated significant increases in peel red color following the initial application and thereafter. Early season MJ treatment reduced fruit diameter and length to diameter ratio but slowed softening and starch hydrolysis. Fruit receiving late season MJ treatments had increased incidence of bitter pit and splitting, shorter green life, and slower softening. Results suggest preharvest application of MJ impacts apple color development and other aspects of fruit quality. Chemical name used: methyl 3-oxo-2-(2-pentenyl)cyclopentane-1-acetate (methyl jasmonate).

Free access

Bitter pit is a physiological disorder that has long been associated with low fruit Ca concentrations. The symptoms appear as depressed brown lesions on the skin of the fruit, typically located directly below the peel, but are often found scattered

Free access

susceptibility to bitter pit ( Bedford, 2001 ; Rosenberger et al., 2001 ). Bitter pit symptoms include brown, dry areas typically just below the peel, typically ranging in size from 1 to 5 mm with adjacent peel also brown. Fruit nutrient content ( Rosenberger et

Free access

Abstract

Phorone reduced bitter pit of apples during 4 seasons. The degree of control varied between cultivars and seasons. The study was carried out in 3 Australian states and New Zealand and involved ‘Cox's Orange Pippin’, ‘Golden Delicious’, ‘Granny Smith’, and ‘Twenty Ounce’. The apples were held in sealed or unsealed polyethylene bags, and the chemical was placed in small containers among the fruit or was injected into the core. Phorone was as effective in reducing bitter pit as a postharvest dip in 4% (w/w) calcium chloride, but it sometimes induced an off flavor. Chemical names used: 2,6-dimethyl-2-5-heptadien-4-one (phorone).

Open Access

`Honeycrisp', a relatively new apple cultivar, is susceptible to bitter pit, a physiological disorder that develops mainly during storage. Although the cause of bitter pit is unknown, calcium (Ca) content of the fruit is known to be involved. A field experiment was conducted in Chanhassen, Minn. to refine recommendations for use of Ca sprays for reduction of bitter pit in `Honeycrisp' apple. Specific objectives were to determine: 1) Ca concentration and content throughout the fruit growing season; and 2) the association of bitter pit incidence with Ca concentration, crop load, vegetative growth and fruit size. Six treatments tested included: control; Ca(NO3)2 sprays all season; Ca(NO3)2 sprays early in the season; Ca(NO3)2 sprays late in the season; hand-thinning combined with Ca(NO3)2 sprays all season and hand-thinning. Ca concentration in fruits was measured bi-weekly using three different sampling methods: segments, cores and plugs. A randomized block design with four trees as experimental unit and five replications was used. Results suggest lower crop loads increase bitter pit incidence. While fruit from the thinned treatments was larger in size by the end of the experiment, no bitter pit was present at harvest. After 4 months of storage, the hand thinning treatment had 7.4% bitter pit, while thinning plus Ca reduced bitter pit to 2.4%. The other treatments had less than 1% bitter pit. Fruit analyses at the end of the growing season indicate that early and full season sprays resulted in the highest Ca concentration in fruit segments and cores. The lowest values were found for the thinning treatment. No association was found between vegetative growth and bitter pit incidence.

Free access

The incidence of external and internal bitter pit in `Cox's Orange Pippin' apple (Malus domestics Borkh.) fruit sprayed with normal therapeutic sprays either with or without Ca salts at 2-week intervals during the growing season was determined after 6 weeks of storage over 7 consecutive years. Following harvest, fruit was either vacuum-infiltrated with CaCI2 or received no further treatment. Although there was a tendency for fruit that had been sprayed and vacuum-infiltrated with Ca to exhibit the greatest degree of bitter pit control, this treatment was not significantly superior to Ca sprays alone. Vacuum infiltration alone reduced the disorder to a lesser extent than Ca sprays and was more effective in reducing external than internal bitter bit. The results suggest that Ca applications over the growing season are superior to postharvest vacuum-infiltration with Ca in the prevention of bitter pit.

Free access