Search Results

You are looking at 81 - 90 of 902 items for :

  • "seed germination" x
  • HortScience x
Clear All

Temperatures above 30 °C may delay or inhibit germination of most of commercial lettuce cultivars. Ethylene enhances lettuce seed germination at high temperatures. Enzyme-mediated degradation of endosperm cell walls appears to be a crucial factor for lettuce germination at high temperature. The galactomannan polysaccharides in lettuce endosperm cell wall are mobilized by endomannanase. The role of endo-mannanase during germination of lettuce seeds at high temperature (35 °C) and the possible role of etlene in enzyme regulation were investigated. Seeds of thermotolerant (`Everglades'-EVE) and thermosensitive (`Dark Green Boston'-DGB) lettuce genotypes were incubated at 20 and 35 °C in water, 10 mM of 1-aminocyclopropane-1-carboxylic acid (ACC), or 20 mM of silver thiosulphate (STS). Also, seeds were primed in an aerated solution of polyethylene glycol (PEG), or PEG+ACC, or PEG+STS. Untreated seeds germinated 100% at 20 °C. At 35 °C, EVE germinated 100%, whereas DGB germinated only 33%. Seed priming or adding ACC during imbibition increased germination of DGB to 100% at 35 °C. Adding STS during imbibition led to a decrease in germination at 35%C in EVE and completely inhibited germination of DGB. Priming with STS led to reduced germination at 35%C of both genotypes. EVE produced more ethylene than DGB during germination at high temperature. Providing ACC either during priming or during germination led to an increase in endo-mannanase activity, whereas STS inhibited mannanase activity. Higher endo-mannana activity was observed in EVE than DGB seeds. The results suggest that ethylene might overcome the inhibitory effect of high temperature in thermosensitive lettuce seeds via weakening of endosperm due to increased endo-mannanase activity.

Free access

Abstract

Depulped seeds of Liriope muscari (Decne.) L. H. Bailey pretreated with GA3 and/or kinetin and placed at 21°C for warm stratification, showed increased germination over unpulped seeds. Germination rates ranged from 87 to 100%. Identical growth regulator treatments resulted in no germination when the depulped seeds were cold stratified (5°C). Unpulped seed, pre-soaked in water for 24 hours or not soaked and given warm stratification germinated 38 and 25%, respectively. This suggested that the inhibition in unpulped seed is influenced by a water soluble inhibitor in the fruit wall.

Open Access

Abstract

The adhesives gum arabic, Methocel A-15, Pelgel, Solka Floe, and 2 experimental materials were evaluated for their effect on germination and early seedling growth of ‘Kentucky 31’ tall fescue (Festuca arundinacea Schreb.), and ‘Adelphi’ Kentucky bluegrass (Poa pratensis L.) and for their ability to retain a limestone seed coating. The adhesives did not adversely affect seed germination, turf quality, and early growth of seedlings of either species. Seedling growth of ‘Adelphi’, however, was enhanced by Methocel A-15 when compared to the control. Adhesive effectiveness for the retention of a limestone seed coating was in the order: Methocel A-15 > Pelgel > Solka Floe > AP-1 = AP-2.

Open Access
Authors: and

Abstract

Germination responses of creeping bentgrass (Agrostis palustris Huds.) and Kentucky bluegrass (Poa pratensis L.), and annual bluegrass (Poa annua L.) to elevated temperature were evaluated by germinating seed in sustained temperature regimes or by moving imbibed seed from high to intermediate or from intermediate to high temperatures. ‘Penncross’ creeping bentgrass germinated well at 40°/30°C (day/night) temperature or when moved from 40/30° to 25°/18° or from 25°/18° to 40°/30°. ‘Baron’ Kentucky bluegrass seed germination was decreased by 34°/28° and there was no germination at 40°/30°. Moving imbibed seed from 40°/30° to 24°/18° resulted in a high germination percentage, while imbibition for 12 or 24 hours at 25° resulted in some germination at 40°/30°. Annual bluegrass seed germination was significantly less at 34°/28° than at 25°/18° and was prevented at 40°/30°. Imbibition at 40°/30° prior to 25°/18° decreased germination and there was no annual bluegrass germination at 40°/30° regardlessf of pretreatments at 25° for up to 24 hours.

Open Access

Seeds of six provenances (Escambia Co., Ala.; Santa Rosa Co., Fla.; Wayne Co., N.C.; Burlington Co., N.J.; New London Co., Conn.; and Barnstable Co., Mass.) of Atlantic white-cedar [Chamaecyparis thyoides (L.) B.S.P.] were stratified (moist-prechilled) for 0, 30, 60, or 90 days at 4 °C. Following stratification, seeds were germinated at 25 °C or an 8/16-hour thermoperiod of 30/20 °C with daily photoperiods at each temperature of 0 (total darkness), 1, or 24 hours. The germination of nonstratified seed did not exceed 18%. Seeds germinated at 25 °C required 60 to 90 days stratification to maximize germination. In contrast, 30 days stratification maximized germination at 30/20 °C. Regardless of stratification duration, germination was generally lower at 25 °C than at 30/20 °C for each provenance. Averaged over all treatments, seeds of the Alabama provenance exhibited the greatest germination (61%), followed by those from Florida (45%), with the remaining provenances ranging from 20% to 38%. However, specific treatments for each provenance induced germination >50%. Germination of seeds not exposed to light was <8%, in contrast with 48% and 55% germination for daily photoperiods of 1 and 24 hours, respectively. Seeds from each of the provenances, except for Alabama, exhibited an obligate light requirement when germinated at 25 °C. At 30/20 °C, the North Carolina, New Jersey, Connecticut, and Massachusetts provenances required light for germination, whereas the Alabama and Florida provenances did not.

Free access
Authors: and

The influence of increasing levels (0.0%, 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.2%, 1.6%, and 2.0%) of NaCl on the germination of Kentucky bluegrass (Poa pratensis), annual ryegrass (Lolium multiflorum), perennial ryegrass (Lolium perenne), creeping bentgrass (Agrostis palustris), tall fescue (Festuca arundinacea), and crested wheatgrass (Agropyron cristatum) was investigated. Kentucky bluegrass, creeping bentgrass, and crested wheatgrass had a 50% reduction in germination at 0.2%, 0.6%, and 0.6% NaCl, respectively, compared to the control and completely lost germination at 0.6%, 1.2%, and 1.6% NaCl, respectively. Seed germination in both annual ryegrass and perennial ryegrass was only 50% of the control at 1.2% NaCl and completely inhibited at 2.0% NaCl. Tall fescue, red fescue, and creeping red fescue showed a 50% reduction in germination at NaCl concentrations of 1.2%, 1.2%, and 0.8%, respectively, while showing a complete inhibition of germination at 2.0%, 2.0%, and 1.6% NaCl, respectively.

Free access

Iris versicolor (blue-flag iris) is a native aquatic plant that grows from Maine to Virginia. It is an important species of wetland regeneration and restoration. Unfortunately, seed germination seldom occurs in the wild. To address this problem, seeds of Iris versicolor were soaked with gibberellin acid (0, 500, 1000, and 1500 ppm) for 24 h after 120 days of cold treatment at 4 °C and then were randomly assigned to three germination temperatures (constant 21 °C; 24 °C/18 °C; 27C/15 °C) and placed in darkness. Germination rates for the three temperature treatments were 54.4% (21 °C), 96.5% (24 °C/18 °C), and 96.0% (27C/15 °C). Oscillating temperature treatments had significantly greater germination rate than constant temperature. Gibberellin acid had significant influence on germination rate; only the constant 21 °C was not favorable for germination. The germination rate was higher at 1000 than at 500 ppm or 1500 ppm or more. Germination occurred within 10 days under germination temperature treatments. All seedlings in petri dishes were successfully transplanted into growing flats.

Free access

The effect of seed germination rate, or of seedling emergence rate, was studied in relation to subsequent plant growth of `Cortina' lettuce (Lactuca sativa L.). Seedling growth response to selection by time of germination was assessed by imbibing seeds at 5 °C to increase the time range for germination. Germinated seeds were removed daily and transferred to “slants” (germination paper held at 20° from vertical) at 15 °C. Five days after each transfer, root and hypocotyl lengths were measured. As days required for germination increased, root lengths decreased and hypocotyl lengths increased, resulting in no change in total seedling length. The relation between rate of seedling emergence from raw or pelleted seeds of the same lot and shoot fresh weight was examined using commercially practiced hydroponic techniques. Shoot fresh weight at 10 and 21 days after planting was related inversely and linearly to the day of emergence for both seed treatments. In the same study, the coefficient of variation of shoot fresh weight was positively related to time of seedling emergence only at 10 days. Germinated seeds were selected after 1 and 2 days of imbibition; subsequent seedling emergence rate and shoot fresh weight at 25 days were recorded. First-day germinated seeds had faster and more synchronous emergence, and produced heavier and more uniform shoots. Discarding slow-to-germinate seeds should enhance seedling emergence and growth.

Free access

Tillandsia eizii is an epiphytic bromeliad that due to over-collection, habitat destruction, and physiological constraints has declined to near threatened status. This species exhibits high mortality in the wild, and seed are characterized by low percentages of germination. As a means to conserve this species, in vitro culture protocols were developed to enhance seed germination and seedling growth. A sterilization protocol using 70% ethanol for 2 minutes followed by 2.6% NaOCl for 40 minutes disinfested seed and promoted seedling growth. Sucrose incorporated into the culture medium had no effect on germination or growth, while NAA inhibited growth, but not germination. Cultures maintained under a 16-hour photoperiod at 22 °C exhibited greater growth than those grown at 30 °C. Seed that germinated in the dark remained etiolated and failed to develop even after transfer to light conditions. Plants grown in vitro were successfully acclimatized and transferred to the greenhouse. Over 86% survival and rapid growth were obtained with either an all-pine-bark medium, or a mixture of 2 redwood bark: 2 fir bark: 2 potting mix: 1 perlite. This demonstrated that in vitro culture of seed may be used to rapidly produce large numbers of T. eizii, and thus can be used for the conservation and reintroduction of this species.

Free access

Few studies on embryogenesis in common bean (Phaseolus vulgaris L.) have been reported and only the early stages of somatic embryogenesis were observed. Dry seeds from two common bean lines were germinated in darkness on L-6 medium containing 4% sucrose, 0.2 g casein hydrolysate /liter and 2.0 g phytagel /liter. The medium for seed germination was supplemented with 0, 2, 4 or 6μM forchlorfenuron (CPPU). Explants from cotyledonary leaves, petioles, hypocotyls and shoot apices were prepared from 14 day-old seedlings. Callus was derived from explant cultures incubated in darkness at 26C on the medium containing 4 μM 2,4-D and 1 μM Kinetin. The callus was transferred after 4 weeks into 125 ml Erlenmeyer flasks containing 50 ml liquid medium and placed on a gyrotary shaker (120 rpm) under cool-white light (12 μmol.m-2 .s-1 ). The liquid medium was used with 2, 4 or 6 μM of 2,4-D alone or with zeatin supplements at relative concentrations of 0.25 and 0.5. Up to 200 somatic embryos from 40 to 50 mg callus inoculations were induced after 4 to 5 weeks. Callus derived from seedlings grown on CPPU-containing medium gave more repetitive somatic embryos. Cotyledonary stage embryos with clear bipolar structure were observed only from callus derived from seedlings grown on CPPU when transferred to suspension cultures containing 2,4-D and zeatin. All somatic embryos differentiated strong roots and some developed leaf-like structures on conversion medium.

Free access