Search Results

You are looking at 71 - 80 of 1,643 items for :

  • optimization x
  • Refine by Access: User-accessible Content x
Clear All
Free access

Antonio Figueira and Jules Janick

In vitro culture of axillary cotyledonary shoots of Theobroma cacao L. (cacao) under increasing CO2 concentration from ambient to 24,000 ppm (culture tube levels) significantly increased total shoot elongation, number of leaves, leaf area per explant, and shoot dry and fresh weight. Although light was necessary for the CO2 response, the effect of various photon fluxes was not significant for the measured growth parameters. Net photosynthesis estimated on the basis of CO2 depletion in culture tubes increased 3.5 times from 463 to 2639 ppm CO2, and increased 1.5 times from 2639 to 14,849 ppm CO2, but declined from 14,849 to 24,015 ppm CO2. Ethylene concentration in culture vessels increased under enriched CO2 conditions. Depletion of nutrients (fructose, K, Ca, Mg, and P) from the medium was increased under enriched CO2 conditions.

Free access

Anita N. Azarenko, Annie Chozinski, Sarah F. McDonald*, Thomas A. Forge, and Timothy Righetti

Information about the use of alternative management practices (AOFMP) in perennial systems to manage soil biota and influence the uptake of nutrients is limited. The objectives of this study are to evaluate AOFMP on soil quality, focussing on soil biology, and on nitrogen uptake efficiency. Research plots are located in Lewis-Brown Farm (LB), Corvallis, OR (`Fuji' apple trees) and Mid-Columbia Ag. Research & Extension Cent. (HR), Hood River, OR (`Red Delicious' apple trees). Main plot treatments were weed control methods: herbicide or cultivation. Sub plot treatments were soil amendments: no amendment, bark mulch (BM), compost, and green vetch/barley mulch (VB). A split-plot completely randomized design with 3 replications was used. Depleted NH3 SO4 was applied to single-tree replicates at bud break in 2001, 2002, and 2003. Compost amended plots contained more fungivorous nematodes than other treatments, although this difference was not significant at LB. At both sites there was a significant interaction between main and sub plot treatments in the number of bacterivores. At LB, the interaction between main and sub plot treatments affected the number of enrichment opportunists and the F-ratio was affected by amendment. At HR, the structural index was also affected by amendment. Compost resulted in the most diverse populations. Soil respiration rates in compost and BM plots were consistently higher than in unamended and VB treated plots. Soil P, pH, and organic matter content were increased by compost amendment and bulk density was decreased. At HR mid-season leaves, fruit, and first year growth from compost treated plots contained the least nitrogen derived from fertilizer, followed by bark mulch. The highest nitrogen derived from fertilizer was in unamended plots.

Free access

Chieri Kubota* and Mark Kroggel

Increasing numbers of vegetable growers purchase their transplants from specialized transplant producers. Possible deterioration of transplants during transportation limits the market size as well as the potential sources of high quality transplants. To determine best conditions for transportation of seedlings, tomato (Lycopersicon esculentum; `Durinta') seedlings with visible flower buds were placed for 4 days under varied air temperature (6, 12, or the conventional transportation temperature of 18 °C) and light intensity 0 (conventional darkness) or dim light at 12 μmol·m-2·s-1 PAR). Plants were evaluated for visual quality, photosynthetic capacity, growth and ultimately fruit yield. Lower temperatures and illumination significantly maintained visual quality of the seedlings. Lower temperature maintained high photosynthetic capacity of the seedlings during transportation. Growth and development of the seedlings were significantly affected by higher temperature resulting in significantly delayed growth and development. Number of fruits set on the first truss was significantly reduced when seedlings were at 18 °C during transportation. Overall, simulated transport at 6 °C under light showed the best transportability without experiencing negative impact for the 4-day simulated transportation. Seedlings at 6 °C in darkness and at 12 °C under light and in darkness also showed satisfactory transportability. Seedlings at 18 °C exhibited serious quality deterioration of seedlings, delay in early growth and development, loss of flower buds on the first truss and yield reduction, which agrees with the fact that conventional transportation is currently able to be no longer than 3 days in duration.

Free access

Michael Raviv, J. Heinrich Lieth, David W. Burger, and Rony Wallach

Physical characteristics of two media were studied concerning water availability to roots, as reflected in specific transpiration rate, stomatal conductance, and specific growth rate of very young leaflets of `Kardinal' rose (Rosa ×hybrida L.), grafted on Rosa canina L. `Natal Brier'. Plants were grown in UC mix [42% composted fir bark, 33% peat, and 25% sand (by volume)] or in coconut coir. Water release curves of the media were developed and hydraulic conductivities were calculated. Irrigation pulses were actuated according to predetermined media moisture tensions. Transpiration rate of plants was measured gravimetrically using load cells. Specific transpiration rate (STR) was calculated from these data and leaf area. STR and stomatal conductance were also determined using a steady-state porometer. Specific growth rate (RSG) of young leaflets was calculated from the difference between metabolic heat rate and respiration rate, which served as an indicator for growth potential. Low STR values found at tensions between 0 and 1.5 kPa in UC mix suggest this medium has insufficient free air space for proper root activity within this range. Above 2.3 kPa, unsaturated hydraulic conductivity of UC mix was lower than that of coir, possibly lowering STR values of UC mix-grown plants. As a result of these two factors, STR of plants grown in coir was 20% to 30% higher than that of plants grown in UC mix. STR of coir-grown plants started to decline only at tensions around 4.5 kPa. Yield (number of flowers produced) by coir-grown plants was 19% higher than UC mix-grown plants. This study demonstrated the crucial role of reaching sufficient air-filled porosity in the medium shortly after irrigation. It also suggests that hydraulic conductivity is a more representative measure of water availability than tension.

Free access

Abdoulaye Traore, Zizhuo Xing, Amy Bonser, and John Carlson

A successful tissue culture initiation step often begins with effective explant sterilization. To improve douglas fir bud culture initiation, five sterilization treatments (20% bleach, 100% bleach, 3 second flaming, 5 second flaming, and self-extinguishing flaming) were evaluated for their effectiveness on winter and spring bud sterilization. The 20% and 100% bleach treatments resulted in the highest percentage of healthy bud cultures (>90% for winter buds). Spring buds showed a higher level of contamination with 20% bleach sterilization (36%) than did winter buds (1%). Successful sterilization was also achieved by flaming, but bud injury was observed. Increased flaming time caused a decrease in the percentage of healthy actively growing buds. The percentage of healthy bud cultures after 3 second flaming, 5 second flaming and self-extinguishing-flaming (9 to 14 s) were 66%, 59%, and 10% respectively. In addition, sterilization by either approach required subsequent bud dissection to remove the outer scales; otherwise most buds were lost to contamination. When sterilization was followed by bud dissection, contamination rates for winter buds were <2% for all treatments. After successful sterilization and culture initiation, bud expansion was the highest (50% to 98%) in the presence of low concentrations of BA (0 to 0.045 μmol·L–1), while high concentrations of BA (0.448 to 4.527 μmol·L–1) reduced bud expansion (0% to 60%), but promoted bud multiplication.

Free access

Said Ennahli and Sorkel Kadir

Variability due to soil types, topography, and climate within a vineyard influences grapevine physiological parameters and fruit quality. Technical feasibility of using precision Geographic Information System (GIS) as a viticulture tool to improve vineyard management and increase wine quality will be investigated. The study was conducted in an experimental vineyard where rows consist of plots with 24 cultivars and selections randomly planted and managed similarly. Monitored vineyard parameters collected by Global Positioning System (GPS) location include soil characteristics, soil moisture, vine growth, crop load, and fruit characteristics. Geospatial maps are used to differentiate yield between the cultivars and selections as high, medium, or low. Production was determined from each variety/selection within the vineyard. Yield parameters were number of clusters, cluster weight, and weight of 50 berries; fruit composition (such as pH), titratable acidity, soluble solids concentration, and anthocyanins were measured. Maps for each factor will be derived via GIS tools and spatial analysis will be conducted to assess which spatial variability factor has more effect on grapevine physiology, yield, and fruit quality. This type of analysis can be used by grape growers to achieve specific wine characteristics in a large or small vineyard by controlling all sources of variability, leading to the ability to perform precision viticulture in the future, with low cost.

Free access

Raymond P. Chée, Daniel I. Leskovar, and Daniel J. Cantliffe

Embryogenic callus growth of sweetpotato [Ipomoea batatas (L.) Lam.] was selectively enhanced by subculture on basal callus proliferation medium modified to contain 15 mm NH4NO3. Embryogenic callus production was doubled on basal callus proliferation medium modified to contain 60 mm K+, while nonembryogenic callus production was reduced 40%. Additions of up to 40 mm NaCl to basal callus proliferation medium did not affect callus proliferation. The development of embryos from calli subculture to embryo production basal medium was unaffected by the KCl or NaCl treatments of the callus proliferation phase. However, embryo production was increased by subculturing callus from callus proliferation medium containing 20 mm NH4 + to embryo production medium containing 10 mm NH4 + Our results demonstrate that changes in mineral nutrition, in addition to growth regulator differences between callus proliferation and embryo production media, are important factors in sweetpotato somatic embryogenesis.

Free access

Rebecca G. Bichsel, Terri W. Starman, and Yin-Tung Wang

Experiments were conducted to determine how nitrogen (N), phosphorus (P), and potassium (K) rate and fertilizer termination time affect the growth and flowering of a Dendrobium nobile Lindl. hybrid, Dendrobium cv Red Emperor ‘Prince’. Nitrogen, P, and K were tested in separate experiments as a factorial combination of five rates and three termination dates (1 Sept., 1 Oct., and 1 Nov. 2005). Nitrogen and K rates were 0, 50, 100, 200, and 400 mg·L−1. Phosphorus rates were 0, 25, 50, 100, and 200 mg·L−1. Levels of the nutrients not being tested were held constant. For all nutrients, ending fertilization on 1 Sept. resulted in greater or similar pseudobulb thickness compared with ending fertilization on 1 Oct. or 1 Nov. Pseudobulbs grew taller as the N rate increased, peaking at 100 and 200 mg·L−1. There were interactions between the N rate and fertilizer termination time on all reproductive characteristics. For all fertilizer termination times, flower number increased once N was applied. When ended on 1 Nov., 200 and 400 mg·L−1 N caused a delay to reach anthesis. All P rates resulted in taller plants with equally more nodes when compared with 0 mg·L−1. As the K rate increased from 0 to 100 mg·L−1, plant height increased, with no further increase at higher rates. The number of leaves remaining increased as N and K rates increased up to 200 mg·L−1. Total flower number and flowering node number increased as the K rate increased to 100 mg·L−1 (terminated on 1 Sept.) or 50 mg·L−1 (terminated on 1 Oct. or 1 Nov.). In the fourth experiment, only N was ended at four termination times, whereas all other nutrients continued to be supplied until flowering. Control plants received all fertilizer elements until flowering. The duration of N application did not affect vegetative or flowering characteristics. No aerial shoots were observed as a result of prolonged application of N at all rates. In summary, 100 mg·L−1 N, 25 mg·L−1 P, and 100 mg·L−1 K are recommended for optimal vegetative growth and reproductive development of Dendrobium cv Red Emperor ‘Prince’.

Free access

Ronald W. Moore, K.M. Eskridge, P.E. Read, and T.P. Riordan

The concept that greater callus mass will induce competence was investigated. The second most immature nodal segments were removed from heavily fertigatcd greenhouse grown plants. Shoots initiated from those nodes were only cut back to one-third their total length. They were subjected to the following treatments: (1) dicamba from 1μM to 5μM in increments of 1.0; (2) B5 medium salt concentrations from 1/3x to 5/3x in increments of 1/3; (3) sucrose levels from 2% to 10% in increments of 2; (4) casein hydrolysate from 0 to 200mg/l in increments of 50. The experiment consisted of twenty-five different treatment combinations in a central composite rotatable second order design. Explants were placed in continuous cool white fluorescent light at 26°C.

Dicamba, B5 salts, and sucrose had significant effects on callus mass (p<.12), while casein hydrolysate had no notable effects on callus mass (p ≥ .57). It was determined that optimum response occurred at 5/3x concentration of B5 salts, 10% sucrose, and 5.0μM dicamba. White, compact calli were observed in treatment combinations that yielded callus fresh weights of two-hundred milligrams or higher.

Free access

Elisabet Claveria, Jordi Garcia-Mas, and Ramon Dolcet-Sanjuan

Homozygous doubled haploid lines (DHLs) from new cucumber (Cucumis sativus L.) accessions could be useful to accelerate breeding for resistant varieties. DHLs have been generated by in vitro rescue of in vivo induced parthenogenic embryos. The protocol developed involves the following: 1) induction of parthenogenic embryos by pollinating with pollen irradiated with a Co60 γ-ray source at 500 Gy; 2) in vitro rescue of putative parthenogenic embryos identified by their morphology and localized using a dissecting scope or X-ray radiography; 3) discrimination of undesirable zygotic individuals from the homozygous plants using cucumber and melon SSR markers; 4) determination of ploidy level from homozygous plants by flow cytometry; 5) in vitro chromosome doubling of haploids; and 6) acclimation and selfing of selected lines. Codominant markers and flow cytometry confirmed the gametophytic origin of plants regenerated by parthenogenesis, since all homozygous lines were haploids. No spontaneous doubled haploid plants were rescued. Chromosome doubling of haploid plants was accomplished by an in vitro treatment with 500 μm colchicine. Rescue of diploid or chimeric plants was shown by flow cytometry, prior to their acclimation and planting in the greenhouse. Selfing of colchicine-treated haploid plants allowed for the perpetuation by seed of homozygous lines. The high rate of seed set, 90% of the lines produced seed, facilitated the recovery of inbred lines. Despite some limiting factors, parthenogenesis is routinely used in a cucumber-breeding program to achieve complete homozygosity in one generation. Breeding for new commercial hybrid cultivars will be accelerated. DHLs are ideal resources for genomic analyses.