Search Results

You are looking at 71 - 80 of 336 items for :

  • bean breeding x
  • User-accessible content x
Clear All
Free access

Mark J. Bassett and Mathias J. Silbernagel

Dry seed of the common bean (Phaseolus vulgaris L.) breeding line S-593 was treated with 200 Gy of gamma radiation, and M2 seed was produced. The seed was planted at Prosser, Wash., and selection was made for plants with greatly reduced seed set. The inheritance of one of the selections for possible male sterility mutation was studied in F2, F3, and backcross generations. This character is controlled by a single recessive gene, for which the symbol ms-1 is proposed. Plants carrying ms-l/ms-1 produce well-filled pods after manual pollination with pollen from normal plants, but produce no seed when protected from insect pollination in greenhouse and field environments. Uses for this mutant are discussed.

Free access

Kimberly J Walters, George L. Hosfield, and James D. Kelly

30 POSTER SESSION 4 (Abstr. 460-484) Breeding/Genetics/Molecular Markers

Free access

Kathryn R. Kleiner, John J. Frett, and James Nienhuis

Lima beans are an important vegetable crop to the processing industry in Delaware, but yields in Delaware are below other areas due to heat. The objective was to correlate RAPD markers from heat-tolerant and intolerant cultivars with phenotypic data. Twenty-five primers were used, 10 of which generated 25 polymorphic bands among 11 cultivars. MDS analysis of genetic distance among the cultivars shows segregation into two major clusters, with Kingston as a distant outlier. Kingston's position can be correlated to published data reporting its consistently good yields even when temperatures are high. The results of this study indicate RAPD markers may be used to screen for cultivars that have high yield potentials despite high temperatures. Further studies to screen F, and inbreeds will determine the usefulness of these markers in breeding programs.

Free access

Mark J. Bassett

The inheritance of an induced mutant for spindly branch and male sterility (SBMS) was investigated in common bean (Phaseolus vulgaris L.) in F2 and backcross populations. The results support the hypothesis that the mutant is controlled by a single recessive gene. Extensive breeding work with SBMS, involving several thousand F2 progeny, produced no recombinant of the types expected if two closely linked genes controlled the character. Therefore, a single pleiotropic gene apparently controls SBMS. Allelism tests demonstrated that SBMS is allelic with sb but not with sb-2 and sb-3. The gene symbol sb ms is proposed for SBMS because it is a new allele at sb, with the order of dominance being Sb > sb > sb ms. Various ways to exploit the new mutant for marked male sterility are discussed.

Free access

Jesse Vorwald and James Nienhuis

and Nienhuis, 1997 ; Tohme et al., 1995 ). In a temperate-adapted, photoperiod-insensitive nuña bean breeding line, ‘PB24’, the effects of seed moisture content and chamber temperature were greater than the effects associated with popping time on the

Free access

James Nienhuis, Jan Tivang, Paul Skroch, and Joao B. dos Santos

Knowledge of relative genetic distance among genotypes is useful in a breeding program because it permits organization of germplasm resources. Genetic distance (GD) was estimated among 65 Phaselous lunatus L.. accessions, which included 4 large-seeded and 7 small-seeded cultivars and 54 germplasm accessions (landrace's) from the Caribbean and North, Central, and South America. Based on 125 polymorphic random amplification polymorphic DNA (RAPD) bands, two major clusters, which generally correspond in seed size and geographic region to [be Mesoamerican and Andean gene pools, were observed among the landraces (GD = 0.726 ± 0.041). Four Fordhook cultivars and a landrace from the United States formed a separate cluster that is more distantly related to the small- (GD) = 0.561 ± 0.039) than to the large-seeded cluster (GD = 0.303 ± 0.022). The mean GD between the Andean and Mesoamerican (0.726), Mesoamerican and Fordhook (0.561), and Andean and Fordhook (0.303) clusters were all significant. The significant GD between the Andean and Mesoamerican groups supports the hypothesized existence of two major gene pools in lima bean. The RAPD marker diversity of the Mesoamerican group was the largest (0.1 10), followed by the Andean (0.097) and Ford hook (0.062) groups. The plot of the relationship between the coefficient of variation (cv) and sample size (number of bands) indicates that cvs as low as 10% for estimating CD between Andean and Mesoamerican lima bean accessions can be achieved by sampling as few as 100 bands.

Free access

Mark J. Bassett

The inheritance of novel flower and seedcoat patterns was studied in three parental materials: PI 390775 and `Springwater Half Runner' (SHR), which have patterned flower and seedcoat colors, and 5-593, a Florida dry bean breeding line with unpatterned purple flowers and seeds. Using crosses between 5-593 and the other two parents, an analysis of F1, F2, backcross F2, and backcross F3 data demonstrated that a single recessive allele in each of the patterned parents controlled flower and seedcoat pattern. Genetic tester stocks were used to demonstrate that the recessive gene for patterning in PI 390775 was nonallelic with C, T, and Mar, the three genes previously known to control seedcoat pattern in common bean. An allelism test between the recessive pattern genes from PI 390775 and SHR demonstrated that they were allelic and that the gene from SHR was dominant. The gene symbols stp (for the gene from PI 390775) and stp hbw (for the dominant gene from SHR) are proposed, where stp stands for stippled seedcoat pattern and the superscript letters hbw stand for half banner white.

Free access

A.J. Daymond, P. Hadley, R.C.R. Machado, and E. Ng

Biomass partitioning of cacao (Theobroma cacao L.) was studied in seven clones and five hybrids in a replicated experiment in Bahia, Brazil. Over an 18-month period, a 7-fold difference in dry bean yield was demonstrated between genotypes, ranging from the equivalent of 200 to 1389 kg·ha-1. During the same interval, the increase in trunk cross-sectional area ranged from 11.1 cm2 for clone EEG-29 to 27.6 cm2 for hybrid PA-150 × MA-15. Yield efficiency increment (the ratio of cumulative yield to the increase in trunk circumference), which indicated partitioning between the vegetative and reproductive components, ranged from 0.008 kg·cm-2 for clone CP-82 to 0.08 kg·cm-2 for clone EEG-29. An examination of biomass partitioning within the pod of the seven clones revealed that the beans accounted for between 32.0% (CP-82) and 44.5% (ICS-9) of the pod biomass. The study demonstrated the potential for yield improvement in cacao by selectively breeding for more efficient partitioning to the yield component.

Free access

Paige Hanning, Dyremple B. Marsh, and Mohsen Dkhili

Chemically fixed nitrogen is a costly import for Caribbean Basin Countries. Increased cost of fertilizer only serves to reduce crop yields in these areas. This greenhouse research was undertaken to evaluate the N2 fixing capabilities and yield potential of several Phaseolus vulgaris lines developed for use in Caribbean Basin countries. Ten common bean lines from breeding programs at the Universities of Puerto Rico and Wisconsin and two efficient Rhizobium phaseoli strains were used for the study. Plants treated with Rhizobium UMR 1899 and UMR 1632 had significantly higher stem and leaf dry weight than the control plants. Bean lines WBR 22-34, WBR 22-50, WBR 22-55, PR9056-98B and the cultivar Coxstone showed increased dry matter accumulation over that of the control plants. Plants treated with the Rhizobium strain UMR 1899 had the highest stem and leaf dry matter accumulation. Nodulation was significantly higher when plants were treated with UMR 1632. The lines WBR 22-34 and PR 9056-98B produced more nodules than the other lines used. Pod yield as measured by number of immature pods was highest for PR 9056-98B when inoculated with Rhizobium UMR 1899.

Free access

D. P. Coyne, E. Arnaud-Santana, J. Beaver, and H. Zaiter

128 ORAL SESSION 37 (Abstr. 263–266) Vegetables: Breeding and Genetics