Search Results

You are looking at 71 - 80 of 346 items for :

  • "water conservation" x
  • Refine by Access: User-accessible Content x
Clear All
Free access

Tracy Dougher, Toby Day, Paul Johnson, Kelly Kopp, and Mark Majerus

The ongoing drought in the Intermountain West has brought a great deal of attention to water conservation over the past several years. During that time, turfgrass irrigation has been targeted as a source for large potential water savings. Some communities promote downsizing turfgrass areas as the best water conservation measure. In reality, turfgrass controls erosion, reduces evaporation from a site, and provides a safe surface for human activities. One alternative to elimination would be wider use of low water-use-grasses appropriate to the area. However, many questions arise regarding the choice of such grasses and their management. Our research addresses these questions. Plots have been established at Montana State University, Bozeman; Utah State University, Logan; and USDA-NRCS Plant Materials Center, Bridger, Mo. The grasses considered include 12 single species and 12 mixed species stands of `Cody' buffalograss, `Foothills' Canada bluegrass, `Bad River' blue grama, sheep fescue, sandberg bluegrass, muttongrass, and wheatgrasses `Sodar' streambank, `Road Crest' crested, `Rosana' western, and `Critana' thickspike with Kentucky bluegrass and tall fescue as controls. Line source irrigation allowed the plots to be evaluated at a number of levels of irrigation. Experimental measurements on the plots included growth response as determined by clipping yield and quality ratings, and species composition. Fescues and wheatgrasses retained their color, texture, and density throughout the growing season, regardless of moisture level. Warm-season grasses performed well in June, July, and August only, and worked poorly in mixtures as the green cool-season grasses could not mask the brown dormant leaves in cooler weather.

Free access

ALLEN G. SMAJSTRLA

The use of microirrigation in Florida citrus production has increased rapidly in recent years. Most new groves are now being developed with microspray or drip irrigation. Many existing sprinkler and seepage (subirrigation) systems have also been converted to micro irrigation. Although water management districts have encouraged the use of micro irrigation for water conservation, research results which solved problems with the practical implementation of this technology and which demonstrated economic incentives are primarily responsible for its popularity in Florida citrus production. Research programs have (1) developed management techniques to eliminate emitter clogging, (2) demonstrated the effective use of microspray systems for freeze protection, (3) increased young tree growth with respect to conventional irrigation methods, (4) demonstrated the cost-effectiveness of microirrigation, and (5) developed management techniques for efficient use of water and nutrients in fruit production.

Free access

ALLEN G. SMAJSTRLA

The use of microirrigation in Florida citrus production has increased rapidly in recent years. Most new groves are now being developed with microspray or drip irrigation. Many existing sprinkler and seepage (subirrigation) systems have also been converted to micro irrigation. Although water management districts have encouraged the use of micro irrigation for water conservation, research results which solved problems with the practical implementation of this technology and which demonstrated economic incentives are primarily responsible for its popularity in Florida citrus production. Research programs have (1) developed management techniques to eliminate emitter clogging, (2) demonstrated the effective use of microspray systems for freeze protection, (3) increased young tree growth with respect to conventional irrigation methods, (4) demonstrated the cost-effectiveness of microirrigation, and (5) developed management techniques for efficient use of water and nutrients in fruit production.

Full access

G.D. Hoyt, D.W. Monks, and T.J. Monaco

Conservation tillage is an effective sustainable production system for vegetables. No-till planters and transplanters and strip-till cultivation equipment are presently available for most vegetables. Lack of weed management tools (herbicides, cultivators, etc.) continues to be the cultural practice that limits adaptability of some vegetables to conservation tillage systems. Nitrogen management can be critical when grass winter cover crops are used as a surface residue. Advantages of using conservation tillage include soil and water conservation, improved soil chemical properties, reduction in irrigation requirements, reduced labor requirements, and greater nutrient recycling. However, disadvantages may include lower soil temperatures, which can affect maturity date; higher chemical input (desiccants and post-emergence herbicides); potential pest carryover in residues; and enhancement of some diseases.

Free access

Douglas F. Welsh

Xeriscape, water conservation through creative landscaping, offers a viable alternative to traditional landscapes which require high inputs of water and labor. Xeriscape is not cactus and rock gardening; but, quality landscaping combining beautiful, function, and water efficiency.

Xeriscape is based on horticulturally sound principles, including: good design, through soil preparation, practical turf areas, appropriate plant selection, efficient watering techniques, mulching and proper maintenance.

Green plant and water industries across the nation have recognized Xeriscape as a proactive, education tool to curb excess water-use by the public and private sectors. In an era where water may become the limiting factor in economic growth for many regions of the nation, Xeriscape may truly be the state-of-the-art.

Full access

C.D. Stanley and B.K. Harbaugh

Methodology was developed to estimate water requirements for production of 20 different potted ornamental plant species with practical application for water conservation in commercial operations. Water requirement prediction equations were generated using pan evaporation to estimate evaporative demand along with plant canopy height and width and flower height as input variables. Coefficients of determination (R2) for the prediction equations among plant species ranged from 0.51 to 0.91, with the lower values mostly associated with plant species with an open or less-uniform growth habit. Variation in water use among different cultivars of marigold also was associated with differences in cultivar growth habit. Estimation of the daily water requirements of potted Reiger begonia and Ficus benjamina using their developed prediction equations was compared to actual water use under common growing conditions to demonstrate the implementation of the method for plant species differing in growth habit.

Free access

R. Louis Baumhardt, W. N. Lipe, David Rayburn, and C. W. Wendt

Mild temperatures during late winter have caused early budbreak in grapes which resulted in freeze injury and significant crop losses in 1980 and 1988. Evaporative cooling of grapevines with microsprinklers when the air temperature exceeded 10 °C (50 °F) used 100 liters/min/hectare of treated grapes (11 gallons/min/acre) and delayed budbreak for a period of 7 to 10 days. Methods of reducing the amount of water used while not reducing the cooling were evaluated. The average hourly difference between wet and dry bud temperatures, measured with thermocouples, were summed during the system operation time and compared as a function of air temperature, wind speed, global radiation, and relative humidity limits. Limiting the cooling system operation time as a function of air temperature, wind speed, or global radiation reduced cooling efficiency by approximately a one to one ratio. Limiting system operation to humidities less than 60% reduced the amount of water used by 33%, with only a 9% reduction in cooling efficiency. By changing the wetting interval employed in this research from 25 seconds every three minutes to 25 seconds every four minutes, total water conservation would increase to 50% with insignificant changes in cooling efficiencies. These system modifications would reduce water application requirements to 50 liters/min/hectare of grapes (5.5 gallons/minute/acre).

Free access

Cathleen A. Peterson, L. Brooke McDowell, and Chris A. Martin

Heightened awareness of ecological concerns have prompted many municipalities to promote water conservation through landscape design. In central Arizona, urban residential landscapes containing desert-adapted plant species are termed xeriscapes, while those containing temperate or tropical species and turf are termed mesoscapes. Research was conducted to ascertain landscape plant species diversity, tree, shrub, and ground cover frequency; landscape canopy area coverage; and monthly irrigation application volumes for xeric and mesic urban residential landscapes. The residential urban landscapes were located in Tempe and Phoenix, Ariz., and all were installed initially between 1985 and 1995. Although species composition of xeric and mesic landscapes was generally dissimilar, both landscape types had comparable species diversity. Mesoscapes had significantly more trees and shrubs and about 2.3 times more canopy area coverage per landscaped area than xeriscapes. Monthly irrigation application volumes per landscaped surface area were higher for xeriscapes. Even though human preference for xeric landscape plants may be ecological in principle, use of desert-adapted species in central Arizona urban residential landscape settings might not result in less landscape water use compared with mesic landscapes.

Free access

R. Louis Baumhardt, W. N. Lipe, David Rayburn, and C. W. Wendt

Mild temperatures during late winter have caused early budbreak in grapes which resulted in freeze injury and significant crop losses in 1980 and 1988. Evaporative cooling of grapevines with microsprinklers when the air temperature exceeded 10 °C (50 °F) used 100 liters/min/hectare of treated grapes (11 gallons/min/acre) and delayed budbreak for a period of 7 to 10 days. Methods of reducing the amount of water used while not reducing the cooling were evaluated. The average hourly difference between wet and dry bud temperatures, measured with thermocouples, were summed during the system operation time and compared as a function of air temperature, wind speed, global radiation, and relative humidity limits. Limiting the cooling system operation time as a function of air temperature, wind speed, or global radiation reduced cooling efficiency by approximately a one to one ratio. Limiting system operation to humidities less than 60% reduced the amount of water used by 33%, with only a 9% reduction in cooling efficiency. By changing the wetting interval employed in this research from 25 seconds every three minutes to 25 seconds every four minutes, total water conservation would increase to 50% with insignificant changes in cooling efficiencies. These system modifications would reduce water application requirements to 50 liters/min/hectare of grapes (5.5 gallons/minute/acre).

Free access

Dennis R. Pittenger, David A. Shaw, and William E. Richie

We conducted an evaluation of three commercial weather-sensing irrigation controllers to determine the climatic data they use, how easy they are to set up and operate, and how closely their irrigation regimes match landscape irrigation needs established by previous field research. The devices virtually controlled an existing reference irrigation system and used its system performance data as required in their initial setup. Reference standard treatments for cool-season turfgrass, trees/shrubs and annual flowers were calculated using onsite, real-time reference evapotranspiration (ETo) data and plant factors developed primarily from previous research. The reference irrigation system applied the correct amount of water to an actual tall fescue turfgrass planting whose water needs served as the reference standard treatment comparison for the cool-season turfgrass treatment. Virtual applied water was recorded for other plant materials and it was compared to the corresponding calculated reference standard amount. Results show each controller adjusted its irrigation schedules through the year roughly in concert with weather and ETo changes, but the magnitudes of adjustments were not consistently in proportion to changes in ETo. No product produced highly accurate irrigation schedules consistently for every landscape setting when compared to research-based reference comparison treatments. Greater complexity and technicality of required setup information did not always result in more accurate, water-conserving irrigation schedules. Use of a weather-sensing controller does not assure landscape water conservation or acceptable landscape plant performance, and it does not eliminate human interaction in landscape irrigation management.