Search Results

You are looking at 61 - 70 of 164 items for :

  • "canopy volume" x
  • Refine by Access: User-accessible Content x
Clear All
Free access

Ashok K. Alva

The aim of this study was to investigate soil pH and copper (Cu) interactions affecting Cu phytotoxicity to young citrus trees on different rootstocks. Hamlin oranges on either Carrizo citrange, sour orange, or rough lemon rootstocks were grown on Candler fine sand at varying soil pH (5.0, 5.5, 6.0, 6.5) without additional Cu or soil applied Cu (liquid form; 240 kg Cu/ha; nine pre- and five post-planting applications over a period of 43 months). Increasing soil pH increased tree height, canopy volume and trunk diameter of trees on all three rootstocks, regardless of Cu treatments. Tree growth response to an increase in soil pH was greater in Cu amended as compared to unamended treatments. Response to pH increase above 6.0 was marginal as compared to that for pH increase from 5.0 to 6.0. Leaf Cu concentrations showed negligible differences in response to Cu treatments; however, Cu concentrations in fibrous roots increased by 126 to 152% in Cu amended as compared to unamended treatments.

Free access

Mikeal L. Roose, Frank Suozhan Cheng, and Claire T. Federici

The `Flying Dragon' cultivar of Poncirus trifoliata L. Raf. is a strongly dwarfing rootstock for Citrus cultivars, reducing canopy volume of 9 year-old `Valencia' orange trees to 1/3 that of trees on standard rootstocks Open-pollinated seed of `Flying Dragon' was screened with isozyme markers to distinguish zygotic from nucellar (apomictic) seedlings. All zygotics had genotypes consistent with an origin by self-pollination. Zygotic seedlings were budded with `Valencia' orange scion and planted in the field. Of 46 progeny evaluated as rootstocks, 35 produced small trees similar to those on nucellar `Flying Dragon' and 11 produced large trees. This ratio is consistent with the 3:1 segregation expected for a single dominant gene. The dwarfing gene was closely linked, or pleiotropic with a gene causing curved thorns and stems. Several RAPD markers close to the dwarfing gene were identified with bulked segregant analysis. `Flying Dragon' apparently originated as a mutation because it had au identical genotype to non-dwarfing strains of trifoliate orange at all 38 isozyme and RFLP markers tested

Free access

Jim Syvertsen and M.L. Smith

Effects of nitrogen (N) rate and rootstock on tree growth, fruit yield, evapotranspiration, N uptake, and N leaching were measured over a 2-year period. Four-year-old `Redblush' grapefruit trees on either sour orange (SO), a relatively slow-growing rootstock, or `Volkamer' lemon (VL), a more-vigorous rootstock, were transplanted into 7.9-m3 drainage lysimeter tanks filled with native sand and fertilized at three N rates. N rates averaged from about 14% to 136% of the recommended rate when trees were 5 and 6 years old. More N leached below trees on SO as trees on VL had greater N uptake efficiency. Canopy volume and leaf N concentration increased with N rate, but rootstock had no effect on leaf N. Fruit yield of trees on SO was not affected by N rate, but high N increased water use and yield for larger trees on VL. Canopy growth or yield per volume of water used (water use efficiency) was lowest at low N, but N use efficiency was highest at the low N rates.

Free access

Frank Suozhan Cheng and Mikeal L. Roose

`Flying Dragon' Poncirus trifoliata L. Raf. is a dwarfing rootstock for citrus. Inheritance of dwarfing ability was studied in a population of open-pollinated seedlings of `Flying Dragon'. Molecular marker genotypes suggest that all seedlings originated from selfing. Progeny seedlings were budded with `Cutter Valencia' orange and planted in the field to evaluate the dwarfing effect of the seedling rootstock. At 5 years after planting, rankit analysis of the frequency distributions of trunk cross-sectional area and canopy volume suggested the presence of two overlapping distributions of 34 dwarf trees and 7 nondwarf. This ratio is consistent with inheritance of rootstock dwarfing as a single dominant gene for which `Flying Dragon' is heterozygous. Two morphological characteristics of `Flying Dragon', curved thorns and twisted trunk growth, were closely linked to, or pleiotropic effects of, the dwarfing gene. Bulked segregant analysis was used to identify three RAPD markers linked to the dwarfing gene. `Flying Dragon' was identical to nondwarfing cultivars of trifoliate orange at 40 homozygous and heterozygous isozyme and RFLP markers; therefore, it is likely that `Flying Dragon' originated as a mutant of a nondwarfing genotype and has not undergone sexual recombination since this event.

Free access

Mebelo Mataa and Shigeto Tominaga

The effects of root restriction, induced by root restriction bags, was evaluated on `Yoshida' Ponkan mandarin (Citrus reticulata Blanco). Trees were planted in 0.02-m3 volume root wrap bags (RWBs), which were made from woven polystyrene fiber, or root control bags (RCBs) made from nonwoven UV-stabilized Duon polystyrene fibre with plastic bottoms. A direct soil planted, nonrestricted root treatment (DPC) was included as a control. After 3 years, reductions in height (14% to 29%), canopy volume (66% to 43%), girth (10% to 22%), and leaf area (8% to 12%) were recorded in both of the root restriction treatments. Greater reductions occurred in the RWB treatment. Photosynthesis, transpiration, water potential, and leaf carbohydrate content were not affected by root restriction although soil moisture content was lower in the root restricted treatments. Fruiting efficiency (i.e., number of fruit per unit volume of tree canopy) improved only in the RWB treatment over the control. Total soluble solids and the fruit color index were enhanced by root restriction.

Free access

Stephen S. Miller and Ross E. Byers

When temperatures reach -26 °C and lower, even for brief periods of time, damage to fruit buds and woody tissue of the peach tree is common. Low temperature injury on peach can lead to bark damage, gummosis, increased incidence of perennial canker, partial or complete crop losses, reduced shoot growth and/or tree death. In Jan. 1994 the Eastern Panhandle of West Virginia and surrounding states experienced three successive nights of temperatures at -28 °C or lower. Beginning in Apr. 1994, 7-year-old `Blake'/Lovell peach trees were subjected to four pruning levels (none, light, heavy, and dehorned) each at three times (April, May, and June) in a replicated factorial arrangement. Specific pruning treatments were applied only in 1994; a local commercially recommended level and time of pruning were applied to all trees from 1995 through 1998. Treatments had a significant effect on canopy volume and fruit yields. Trees receiving no pruning or dehorned trees and trees pruned in June had lower yields in 1995 than trees pruned in April or May or trees receiving a light or heavy pruning. These treatments also produced fewer large fruit at harvest. Lower yields and smaller fruit led to reduced dollar returns per hectare in 1995. Yields from 1996 through 1998 were lower for trees that were dehorned pruned in 1994 although there were little or no differences in fruit sizes between treatments. Time and/or level of pruning had effects on the number of cankers and number of large (>5.1 cm) cankers.

Free access

Thomas A. Obreza and Robert E. Rouse

The growth response of young `Hamlin' orange (Citrus sinensis L. Osbeck) on Carrizo citrange (C. sinensis × Poncirus trifoliatu L. Raf.) trees to N-P-K fertilizer rates under field conditions in southwestern Florida was studied to determine the minimum fertilizer required to bring trees into maximum early production. The highest 8N-1.8P-6.6K fertilizer rate was 2.72,5.45, and 8.17 kg/tree in 1989,1990, and 1991, respectively. Additional fertilizer treatments equaled 50%, 25%, or 13% of the maximum rate. Fertilizer sources contained either all water-soluble N (applied more frequently) or 40% to 50% controlled-release N (applied less frequently), and they did not affect fruit yield or quality. The response of trunk cross-sectional area, tree canopy volume, and fruit yield to fertilizer rate was described by a linear plateau model. The model predicted a fruit yield of 22.6 kg/tree at the estimated critical fertilizer rate of 48% of maximum. Fruit yield at the 50% maximum rate averaged 21.2 kg/tree. As fertilizer rate increased, total soluble solids concentration (TSS) in juice and the TSS: acid ratio decreased, but weight per fruit and TSS per tree increased. A fruit yield >21 kg/31-month-old tree indicated vigorous growth.

Free access

R.C. Beeson Jr.

Three species of woody ornamentals, Viburnum odoratissimum Ker Gawl, Ligustrum japonicum Thunb., and Rhaphiolepis indica Lindl. were transplanted from 3.8-L into 11.4-L containers and grown for 6 months while irrigated with overhead sprinkler irrigation. Irrigation regimes imposed consisted of an 18-mm-daily control and irrigation to saturation based on 20%, 40%, 60%, and 80% deficits in plant available water [management allowed deficits (MAD)]. Based on different evaluation methods, recommendations of 20%, 20%, and 40% MAD are supported for V. odoratissimum, L. japonica, and R. indica, respectively, for commercial production. Comparisons of plant growth rates, supplied water, and conversion of transpiration to shoot biomass are discussed among irrigation regimes within each species. Comparisons of cumulative actual evapotranspiration (ETA) to either shoot dry mass or canopy volume were linear and highly correlated. Results indicated there were minimum cumulative ETA volumes required for plants to obtain a specific size. This suggests that irrigation regimes that restrict daily ETA will prolong production times and may increase supplemental irrigation requirements. Thus the hypothesis that restrictive irrigation regimes will reduce irrigation requirements to produce container plants is false due to the strong relationship between cumulative ETA and plant size.

Open access

William S. Castle

Abstract

Two groups of 8-year-old ‘Murcott’ [Citrus reticulata Blanco × C. sinensis (L.) Osbeck hybrid?] trees on rough lemon (C. jambhiri Lush.) rootstock were transplanted with a Vermeer tree digger in March and July, respectively. Root and shoot pruning and a 2% (v/v) spray of a pinolene-based antitranspirant (Vapor Gard) formed the treatments either individually or in combination. Canopy size at transplanting had the greatest effect on tree water-stress and subsequent tree growth and yield. The antitranspirant and root pruning tended to reduce leaf water-stress, but the effects generally were small and nonsignificant. Root pruning also seemed to stimulate new root growth. After transplanting, roots grew 2 to 3 m beyond the soil ball in one year. Four years after transplanting there were virtually no differences in tree height or canopy volume. Cumulative yield was less for trees with 30% and 85% of their foliage removed as compared to those with 50% removed. Trees pruned 50% bore fruit the year after transplanting and consistently yielded more throughout the study.

Free access

Larry R. Parsons, T. Adair Wheaton, and William S. Castle

Citrus trees in an experimental planting responded well to high application rates of reclaimed water. Irrigation treatments included annual applications of 400 mm of well water and 400, 1250, and 2500 mm of reclaimed water. The effects of these irrigation treatments on two citrus cultivars (`Hamlin' orange and `Orlando' tangelo) combined with four rootstocks were compared. Growth and fruit production were better at the higher irrigation rates. The concentration of soluble solids in juice was diluted at the highest irrigation rate, but total soluble solids per hectare increased due to the greater fruit production. Average soluble solids/ha production was >15% higher at the 2500-mm rate than the 400-mm reclaimed water rate. While fruit soluble solids were usually lowered by higher irrigation, the reduction in fruit soluble solids observed on three of the rootstocks did not occur in trees on Carrizo citrange. Trees on Cleopatra mandarin grew similarly at the different irrigation rates, but canopy volume of trees on Swingle citrumelo was significantly smaller at the 400 mm rate than at the 2500 mm rate. Fruit peel color score was lower but juice color score was higher at the highest irrigation rate. Weed pressure increased with increasing irrigation rate, but was controllable. Both juice and fruit soluble solids were higher on Swingle citrumelo and lower on Cleopatra mandarin rootstock. Total soluble solids/ha, solids/acid ratio, and juice color were higher on Swingle rootstock. Reclaimed water, once believed to be a disposal problem in Florida, can be an acceptable source of irrigation water for citrus on well drained soils at rates up to twice the annual rainfall.