Search Results

You are looking at 51 - 60 of 1,247 items for :

  • molecular marker x
  • Refine by Access: User-accessible Content x
Clear All
Free access

Patrick Conner, Joann Conner, Paige Catotti, Jennifer Lewter, John R. Clark, and Luiz A. Biasi

University of Georgia (U.S.A) breeding program Acta Hort. 1046 303 307 Dalbó, M.A. Ye, G.N. Weeden, N.F. Steinkellner, H. Sefc, K.M. Reisch, B.I. 2000 A gene controlling sex in grapevines placed on a molecular marker-based genetic map Genome 43 333 340

Free access

Mirko Siragusa, Fabio De Pasquale, Loredana Abbate, Letizia Martorana, and Nicasio Tusa

. Genetic diversity (H) of Nei (1973) and Shannon index ( S ) ( Lewontin, 1972 ) were used to summarize the data for molecular markers, and their standard deviations (SD) were indicated. The percentage of polymorphisms (Pp) was given as number of

Free access

Rohollah Karimi, Ahmad Ershadi, Kourosh Vahdati, and Keith Woeste

improvement, forest restoration, conservation, and sustainable management of J. regia , suitable molecular markers are needed to assess genetic variability. Because they are hypervariable, codominant, and highly informative, simple sequence repeat (SSR) or

Free access

Tera M. Bonney, Shawn P. Brown, Snake C. Jones, Kirk W. Pomper, and Robert L. Geneve

The pawpaw [Asimina triloba (L.) Dunal] is a native plant found mainly in the southeastern and eastern United States, and its fruit has great potential as a new high-value crop in these regions. Although there are ≈45 named pawpaw cultivars, breeding for improvement of specific traits, such as fruit size and quality, is desirable. Our long-term goal is to utilize molecular marker systems to identify markers that can be used for germplasm diversity analyses and for the construction of a molecular genetic map, where markers are correlated with desirable pawpaw traits. The objective of this study was to identify random amplified polymorphic DNA (RAPD) markers that segregate in a simple Mendelian fashion in a controlled A. triloba cross. DNA was extracted from young leaves collected from field-planted parents and 20 progeny of the cross 1-7 × 2-54. The DNA extraction method used gave acceptable yields of ≈7 μg·g-1 of leaf tissue. Additionally, sample 260/280 ratios were ≈1.4, which indicated that the DNA was of high enough purity to be subjected to the RAPD methodology. Screening of 10-base oligonucleotide RAPD primers with template DNA from the parents and progeny of the cross has begun. We have identified two markers using Operon primer B-07 at 1.1 and 0.9 kb that segregate in a simple Mendelian fashion in progeny of the 1-7 × 2-54 cross. Other primers and controlled crosses will also be screened.

Free access

B. Khadari, A. Oukabli, M. Ater, A. Mamouni, J.P. Roger, and F. Kjellberg

A study was conducted to identify genotypes present in a Moroccan fig germplasm collection and provide the first database for a reference collection in northern Morocco. In total, 75 fig samples were analyzed using 8 intersimple sequence repeat primers and 6 simple sequence repeat loci. From these samples, we identified 72 fig genotypes. In genetically heterogeneous cultivars, genotypes under the same denomination were distinguished by both molecular markers and pomological traits. Molecular analysis was used to classify the germplasm into 46 well-defined cultivars and 6 caprifig trees. The remaining genotypes were not clearly identified due to three cases of mislabeling and four cases of homonymy. No evidence was found for the occurrence of geographically widespread genotypes.

Free access

Soon O. Park, Dermot P. Coyne, James R. Steadman, and Geunhwa Jung

White mold, incited by Sclerotinia sclerotiorum (Ss), is an important disease of common bean (Phaseolus vulgaris). Our objective was to identify RAPD markers and seedcoat pattern associated with QTL affecting resistance to Ss isolates 152 and 279 in a molecular marker-based linkage map previously constructed using a recombinant inbred (RI) population from the common bean cross `PC-50' (resistant to Ss) x XAN-159 (susceptible to Ss). White mold reactions were derived from a greenhouse straw test. Continuous distributions for the reactions to Ss isolates 152 and 279 were observed for RI lines, indicating quantitative inheritance. An intermediate (+0.67) Pearson correlation was observed between the reactions to Ss isolates 152 and 279. Low (0.24 and 0.23) narrow-sense heritabilities were found for the reactions to Ss isolates 152 and 279. Three QTL affecting resistance to Ss isolate 152 explained 33% of the phenotypic variation. Four QTL affecting resistance to Ss isolate 279 explained 54% of the phenotypic variation. The seedcoat pattern marker (C) on linkage group I was most consistently associated with resistance to Ss isolates 152 and 279, and explained 10% and 24% of the phenotypic variation for the traits, respectively. This is the first report on detection of QTL for white mold resistance in common bean. The RAPD markers and seedcoat pattern could be useful in breeding for white mold resistance.

Free access

K. Ikeda, A. Watari, K. Ushijima, H. Yamane, N.R. Hauck, A.F. Iezzoni, and R. Tao

S4′ is a pollen-part mutant in sweet cherry (Prunus avium L.) that is extensively used to develop self-compatible cultivars. The S4′-haplotype is known to have a functional stylar component and a nonfunctional pollen component. The pollen component in sweet cherry necessary for the specificity of the pollen reaction is believed to be an S-haplotype specific F-box protein gene, called SFB. This study describes two molecular markers that distinguish between SFB4 and SFB4′ by taking advantage of a four base pair deletion in the mutant allele. The resulting polymerase chain reaction (PCR) products can either be separated directly on a polyacrylamide gel or they can be subjected to restriction enzyme digestion and the different sized products can be visualized on an agarose gel. The latter technique utilizes restriction sites created in the PCR products from the SFB4′ allele, but not the SFB4 allele. Because the primer sets created differential restriction sites, these primer sets were termed dCAPS (derived cleaved amplified polymorphism sequence) markers. These molecular assays can be used to verify self-compatibility conferred by the S4′-haplotype.

Free access

Geunhwa Jung, Paul W. Skroch, Dermot P. Coyne, James Nienhuis, E. Arnaud-Santana, H.M. Ariyarathne, Shawn M. Kaeppler, and Mark J. Bassett

Randomly amplified polymorphic DNA (RAPD) molecular markers were used to construct a partial genetic linkage map in a recombinant inbred population derived from the common bean (Phaseolus vulgaris L.) cross PC-50 × XAN-159 for studying the genetics of bacterial disease resistance in common bean. The linkage map spanned 426 cM and included 168 RAPD markers and 2 classical markers with 11 unassigned markers. The seventy recombinant inbred lines were evaluated for resistance to two strains of common bacterial blight [Xanthomonas campestris pv. phaseoli (Smith) Dye] (Xcp). Common bacterial blight (CBB) resistance was evaluated for Xcp strain EK-11 in later-developed trifoliolate leaves and for Xcp strains, DR-7 and EK-11, in first trifoliolate leaves, seeds, and pods. One to four quantitative trait loci (QTLs) accounted for 18% to 53% of the phenotypic variation for traits. Most significant effects for CBB resistance were associated with one chromosomal region on linkage group 5 and with two regions on linkage group 1, of the partial linkage map. The chromosomal region (a 13-cM interval) in linkage group 5 was significantly associated with resistance to Xcp strains DR-7 and EK-11 in leaves, pods, and seeds. The regions in linkage group 1 were also significantly associated with resistance to both Xcp strains in more than one plant organ. In addition, a seedcoat pattern gene (C) and a flower color gene (vlae) were mapped in linkage groups 1 and 5, respectively, of the partial linkage map. The V locus was found to be linked to a QTL with a major effect on CBB resistance.

Free access

N. Mutlu, D.P. Coyne, S.O. Park, and J.R. Steadman

Common bacterial blight (CBB) in common bean (Phaseolus vulgaris L.), caused by Xanthomonas campestris pv. phaseoli (Xcp), reduces bean yields and quality throughout the world. Pinto `Chase' is a high-yielding variety with moderate resistance to Xcp derived from great northern Nebraska #1 selection 27, whose resistance is derived from an unknown tepary (P. acutifolius) bean source. XAN-159 is a black mottled small seeded breeding line with different genes for high resistance to Xcp derived from a different tepary source (PI 319443). Our objective was to pyramid different genes for Xcp resistance from the donor parent XAN-159 into the rust-resistant recurrent parent Pinto `Chase' using the classical back-cross breeding method with confirmation of resistance using RAPD molecular markers. Resistance was confirmed in some BC2F2 generation plants. Seven RAPD markers and the V locus (flower color) previously identified were confirmed in the BC1 and BC2 populations. Smaller seed size, purple flower color, and black mottled seed coat color were coinherited with resistance to Xcp. However, a recombinant plant with enhanced CBB resistance and moderate-sized pinto seed was identified. Backcross breeding is being continued.

Free access

Rebecca C. Lough and R.G. Gardner

During the last century Phytophthora infestans (Mont.) de Bary, which causes the devastating disease late blight of tomato and potato, has been controlled with pesticides. Recently, the difficulty of controlling late blight has increased due to the appearance of new strains of P. infestans that are more virulent and are resistant to metalaxyl. Numerous P. infestans resistance genes exist within the Solanaceae; however, most of these are race-specific and have the potential of being overcome. To achieve durable resistance, it may be necessary to utilize multigenic resistance or gene pyramiding. The Lycopersicon hirsutum Kunth accession LA1033 is highly resistant to P. infestans. To incorporate resistance into a useful background, the L. esculentum Miller inbred line NC215E was used as a recurrent parent in backcrossing with L. hirsutum LA1033. A population of 264 BC3F1 plants derived from 11 BC2F2 families was planted at Fletcher and Waynesville, N.C., in July 1998 in a replicated field trial. BC3F2 seed were collected from a single highly resistant BC3F1 plant. The BC3F2 population was tested for resistance using a detached leaf screen. To verify growth chamber test results, BC3F3 seeds were collected from the BC3F2 individuals and were planted in a field trial at Fletcher in July 1999. The ratio of resistant to susceptible progeny fit the expected ratio for an incompletely dominant trait controlled by two loci. To identify molecular markers linked to the resistance loci, DNA was extracted from the highly resistant and susceptible BC3F2 individuals, and bulks of DNA were constructed. The resistant and susceptible bulks were screened with AFLP (amplified fragment length polymorphism) markers. Results of the AFLP study indicate marker linkage to resistance.