Previous studies with tree species have demonstrated that foliar boron (B) promotes flowering, fruit set, and yield. However, for most species the optimum time for foliar B application has not been determined. This investigation was undertaken to study the effects of time and rate of B application on almond [Prunus dulcis (Mill D.A. Webb)] tissue B concentration, fruit set, and yield. Solubor (Na2B8O13.4H2O), a commercial product containing 20.5% B, was applied with a handgun sprayer either in September (3 weeks postharvest), December (dormancy), or February (budbreak) at rates of 0, 0.8, and 1.7 kg·ha-1 B to almond cv. Butte at one site (Parlier, Fresno County, Calif.), and of 0, 0.8, 1.25, 1.7, and 2.1 kg·ha-1 B on the same cultivar in August, September, or February at a second site (Orland, Glenn County, Calif.) using Borosol, a polyboronated commercial product containing 10% B. At site 1, September application was more effective in increasing tissue B concentration, fruit set, and yield than were December or February applications. The optimal rate was 0.8 to 1.7 kg·ha-1 B when applied in September. At site 2, application in 1996 and 1997 increased tissue B concentration almost linearly, especially when applied in August and February. Application at the highest rate (2.1 kg·ha-1 B) in September produced the greatest final fruit set and yield in 1996. February applications increased initial fruit set at both sites but were less effective than September applications in increasing yield. Application of B did not affect any yield variable in 1997. These results suggest that B should be applied immediately postharvest (September) for optimal effect on tissue B concentration, fruit set, and yield in almond.
Triclopyr was applied once or twice in consecutive years to Virginia creeper [Parthenocissus quinquefolia (L.) Planch.] that was growing along the ground beneath the peach [Prunus persica (L.) Batsch.] tree canopy. All rate (0 to 1.1 kg·ha-1) and month combinations controlled Virginia creeper during the season of application. A single application of triclopyr at 1.1 kg·ha-1 was insufficient for control beyond 1 year. Satisfactory control of Virginia creeper was obtained with two applications of triclopyr at 1.1 kg·ha-1 made in either August or September. Chemical name used: [(3,5,6-trichloro-2-pyridinyl)oxy]acetic acid (triclopyr).
Abstract
Effects of 16 nitrogen treatments were compared in 1974, 1975 and 1976 on a United States Golf Association (USGA) golf green planted with ‘Tifgreen’ Bermudagrass (Cynodon dactylon (L.) Pers × C. transvaalensis). Activated sewage sludge (Milorganite) was superior to ammonium nitrate and ureaformaldehyde (Uramite) at most rates and application frequencies. The best quality (by panel evaluation) turfgrass resulted from 1.80 kg per 92.9 m2 of Milorganite N applied monthly (May to November) or bimonthly applications of 5.40 kg. Biweekly applications of 0.45 or 0.90 kg of ammonium nitrate N ranked next, but monthly applications of 0.45 to 1.35 kg failed to provide acceptable turfgrass quality. Ureaformaldehyde N at monthly rates from 0.45 to 1.80 kg was inferior to other sources at the same rates and application frequencies. Foliar concentrations of N, P, K, Cu and Zn above critical levels were associated with increased quality and yield. Tissue Mg, S, Fe and Mn content had no influence on turf quality or yield. Foliage micronutrient levels were generally higher than previously reported by other workers.
Boron has been used to overcome the disorder blister in varieties such as `Jewel'. `Hernandez' is an attractive, good-yielding variety with uniform shape that will consistently pack out at 80% to 90%. Over time in storage, however, roots develop blister-like symptoms, rendering roots unmarketable for fresh market. Our objective was to evaluate the effect of different B rates and application times on the yield and quality of `Hernandez' roots. Rates were varied up to 2.24 kg actual B/ha 6 days after planting, while various soil and foliar application times (6, 34, and 69 days after planting) were evaluated at 1.12 kg·ha–1. In 1994, three row plots were arranged in a randomized complete block design and replicated four times. Planting was on a deep sand to maximize the effect of the B carrier Solubor. Roots were harvested, graded, and weighed 120 days after planting and storage roots evaluated for blister-like symptoms in Mar. 1995. No significant differences in yield were attributed to B rate or application method. Blister-like symptoms were more severe when no B was applied; however, application of B did not eliminate symptoms, as most roots had the blister-like appearance. Boron application did not solve the problem, but symptoms were less apparent when some B was applied.
Citrus trees in an experimental planting responded well to high application rates of reclaimed water. Irrigation treatments included annual applications of 400 mm of well water and 400, 1250, and 2500 mm of reclaimed water. The effects of these irrigation treatments on two citrus cultivars (`Hamlin' orange and `Orlando' tangelo) combined with four rootstocks were compared. Growth and fruit production were better at the higher irrigation rates. The concentration of soluble solids in juice was diluted at the highest irrigation rate, but total soluble solids per hectare increased due to the greater fruit production. Average soluble solids/ha production was >15% higher at the 2500-mm rate than the 400-mm reclaimed water rate. While fruit soluble solids were usually lowered by higher irrigation, the reduction in fruit soluble solids observed on three of the rootstocks did not occur in trees on Carrizo citrange. Trees on Cleopatra mandarin grew similarly at the different irrigation rates, but canopy volume of trees on Swingle citrumelo was significantly smaller at the 400 mm rate than at the 2500 mm rate. Fruit peel color score was lower but juice color score was higher at the highest irrigation rate. Weed pressure increased with increasing irrigation rate, but was controllable. Both juice and fruit soluble solids were higher on Swingle citrumelo and lower on Cleopatra mandarin rootstock. Total soluble solids/ha, solids/acid ratio, and juice color were higher on Swingle rootstock. Reclaimed water, once believed to be a disposal problem in Florida, can be an acceptable source of irrigation water for citrus on well drained soils at rates up to twice the annual rainfall.
Abstract
Thirteen species of woody ornamentals were treated over-the-top with glyphosate in a 6 × 6, rate by time factorial experiment. The influence of application timing on glyphosate phytotoxicity was significant for all species. The times of maximum tolerance and injury were species dependent. Species were organized into 4 response groups based on the effects of application time. Group 1 species, including ajuga (Ajuga reptans L.), azalea (Rhododendron obtusum Planch. ‘Coral Bells’), and a variegated liriope (Liriope muscari L.H. Bailey), were injured on all application dates. Species in groups 2, 3, and 4 exhibited tolerance to fall applications of glyphosate. Group 2, including wax leaf privet (Ligustrum japonicum Thunb.), sustained maximal injury from spring applications. Group 3 species, including Compacta holly (Ilex crenata Thunb. ‘Compacta’), were injured most by summer applications of glyphosate. However, Blue Rug juniper (Juniperus horizontalis Moench ‘Wiltonii’), a representative of group 4, was tolerant of glyphosate applications, sustaining only temporary tip chlorosis from spring and early summer treatments. First season evaluations were not sufficient to describe the ultimate effects of glyphosate on plant quality. Visual and objective evaluations in the 2nd growth season also were necessary. Chemical name used: N-(phosphonomethyl) glycine (glyphosate).
application rate above ETc (gray bar above the curve) represents the risk of deep water percolation and loss. 1 gal/100 ft = 0.1242 L·m −1 ; 1 inch = 2.54 cm. Water can be applied slowly ( Fig. 1B and C ) by using emitters with low FRs (<15 gal/100 ft per hour
One of the most difficult times to balance crop nitrogen (N) requirements with concerns about nitrate-N leaching occurs during crop establishment, when root systems are poorly developed and not widely distributed in the growing medium. This dilemma can be exacerbated when producing a slow-growing plant such as leatherleaf fern (Rumohra adiantiformis [Forst.] Ching) on sandy soils in shadehouses in areas with significant rainfall. Rhizomes were planted in 36 drainage lysimeters containing Tavares fine sand located in a shadehouse. Nitrogen fertilizer was applied at nine rates using liquid and/or controlled-release fertilizer. Nitrogen application rates were varied as the rhizomes became established and spread into unplanted areas of the lysimeters. Irrigation and rainfall were monitored and the amount of water not lost to evapotranspiration was determined. Nitrogen (ammoniacal, nitrate/nitrite, total Kjeldahl) concentrations in leachate collected below the rootzone were determined. Stipe sap nitrate and frond total Kjeldahl nitrogen (TKN) were determined to try to develop a production monitoring technique. Initially, only leachate samples from controlled-release fertilizer plots treated at 21 and 42 kg of N/ha per year and liquid fertilizer at 28 kg of N/ha per year were consistently below the maximum contamination level (MCL) of 10 mg·L–1. As the fern became established, leachate nitrate/nitrite-N concentrations from higher N application rate treatments also remained below the MCL. Leachate N concentrations decreased as rainfall increased. Fern growth increased with increasing N application rate. Stipe sap nitrate-N and frond TKN concentrations were not well-correlated during establishment.
different rates of N fertilizer. Using deciduous and evergreen cultivars of container-grown Rhododendron , our objectives were to determine whether spraying plants with urea in the fall alters 1) uptake of nutrients other than N in the year of application
Abstract
A study of seasonal and landscape effects on residential water application rates used to maintain meso-phytic plants in Las Cruces, New Mexico showed a positive significant correlation between water applied and landscape area maintained. However, only one-half of the variation in water applied was accounted for in the analysis. In 2 years, about 40% more water was applied than the estimated requirement. The principal reason for excessive water use appeared to be consumers’ lack of knowledge about plant water requirements.