( Daughtrey and Benson, 2005 ), scouting crops, rogueing symptomatic plants, and applying fungicides and/or biological control agents ( Moorman et al., 2002 ; Moorman and Kim, 2004 ). Currently, the number of plant protection products that are effective
evaluate the ability of insecticides and biological control agents to regulate fungus gnat populations. Therefore, it is important to use a procedure that results in the highest recovery rates of adults so that the effectiveness of an insecticide or
thrips on roses [ Rosa sp. ( Casey et al., 2007 )]. The same cannot be said of woody ornamental nursery production, where relatively little applied research has been conducted on the use of biological control agents for pest management. Most of the work
suppress other fungal pathogens including root rot pathogens ( Mmbaga et al., 2016 ). The objectives of this study were to 1) evaluate the efficiency of six previously selected microbial isolates (B17A, B17B, F13, F16, Y4, and Y14) as biological control
Recent advances in the development of large-scale, in vitro rearing techniques and formulation technology have prompted the commercialization of entomopathogenic nematodes. The potential for these nematodes as biological control agents is very promising, with proven efficacy against a wide variety of soil-inhabiting insects including root weevils, white grubs, mole crickets, and fungus gnats. Entomopathogenic nematodes are currently marketed in many countries for a variety of horticultural crops, including turfgrass, vegetables, berries, ornamentals, and citrus. Specific examples of successful application of nematodes for the control of insect pests during stand establishment will be discussed.
This study was carried out to determine the influences of planting date (June, July) and soil applications of Trichoderma harzianum (strain T-95) and a fungicide containing ethazole + thiophanate (BanrotR) on flower production of standard carnation cvs. Improved White and Tanga. The one-year production data showed that the fungicide treatment increased flower yield by 7.3% (33.5 flowers/m2) and 4.8% (23.3 flowers/m2) in Improved White and Tanga, respectively, for June planting. Improved White produced more flowers and fancy grades when planted in July as compared to June planting. Planting date did not influence either the yield or the flower quality in Tanga. The effectiveness of Trichoderma as a biological control agent on flower yield and quality was not evident. The patterns of weekly flower production for the two cultivars were determined and graphically illustrated.
Pecans (Carya illinoinensis) are produced under a wide array of environmental conditions—from the warm humid southeastern states, to the continental climate of the central plains, to the arid climates of the American west. In addition, pecan cultural systems vary from the low-input management of native stands of seedling trees to the intensive management of single-cultivar pecan orchards. This wide diversity of pecan agroecosystems has fostered the development of innovative, site-specific approaches toward pecan pest management. Current pecan pest management programs require an intimate knowledge of orchard ecology. Growers use monitoring methods and prediction models to track pest populations. Biological control agents are conserved by habitat manipulation and/or augmented through inoculative releases. Selective pesticides are used to control target pests while conserving natural enemies. Four pecan cultural systems are described in detail to illustrate how ecological principles are applied to widely diverse pecan agroecosystems.
The application of plastic mulches, row cover or a combination of the two were evaluated from 1987 to 1991 for reducing early blight of tomatoes and Alternaria leaf spot of okra. Early blight on early season tomatoes (TU-80-130, New Yorker and Floradade) was significantly reduced by the application of black plastic mulch (BM) or BM plus spunbonded polyester row cover (RC) compared to bare soil. Early blight evaluation of late season tomato (Better Boy) showed that BM significantly reduced the incidence and number of lesions per leaf on the fruit clusters compared to bare soil, but the spunbonded polyester RC treatment didn't improve disease reduction of the BM. Alternaria 14 spot of Clemson Spineless okra in 1989 was severe on plant grown in bare soil compared to those grown on BM, BM plus VisPore row cover, clear plastic mulch (CM) and CM plus VisPore RC treatments. These soldier indicted that the application of agriplastic techniques could be used as a new crop management option in an IPM program to reduce the application of foliar fungicides or application of biological control agents.
Greenhouses contain a vast array of insect, mite, and disease pests primarily managed by applications of conventional and biorational pesticides including insecticides, miticides, and fungicides. However, biorational pesticides have a narrow range of pest activity. As a result, greenhouse producers tank mix to broaden application activity. Research has demonstrated that tank mixing can result in either synergistic or antagonistic interactions for targeted pests. However, the impact of tank mixing insecticides and fungicides on predatory mites, Neoseiulus cucumeris, used to manage western flower thrips, Franklinella occidentalis, is unknown. The objective of this research was to determine how mixtures of four different pesticides (Conserve, Avid, Cleary's, and Decree), alone and in all possible combinations affect predatory mite survival in a laboratory bioassay. Individual 2-day-old adult mites, isolated in a cell of a bioassay tray, were exposed to one of the 15 pesticide treatments, or a water control. Treatments were replicated 15 times. Trays were held in an environmental chamber and mite mortality was assessed after 24 hours. Mite mortality was differentially impacted by some pesticide treatments when compared with the water control. One pesticide mixture, Conserve + Cleary's, significantly reduced mite survival compared to other pesticide treatments or the water control. Up to 70% of the mites exposed to this treatment died. The combination of Conserve + Cleary's should be avoided as a tank mixture when the biological control agent, Neoseiulus cucumeris, is used to manage western flower thrips.
The agave weevil (Scyphophorus acupunctatus Gyllenhal) (AW) is widely distributed and is severe pest of plants in the Order Liliales, Familiy Agavaceae, such as Agave tequilana, A. fourcroydes, A. sisalana, A. sp., Polianthes tuberosa, and Yucca sp. Some of these species have importance as ornamental, medicinal, fragrant essence, and raw fiber. AW is controlled with insecticides, but insecticides are unable to reach the larvae in the galleries where the larvae borrows the agave crowns. Galleries are cryptic habitats where the entomopathogenic nematodes are able to infect instars of the AW. Recently, Hueso-Guerrero, and Molina-Ochoa (2004) reported the occurrence of native steinernematid nematodes naturally infecting the AW larvae. Virulence of isolates and strains of steinernematid and heterorhabditid nematodes against AW larvae was determined under laboratory conditions. Three native steinernematid isolates obtained from naturally infected AW larvae (A1, A2, and A3) were bioassayed a concentration of 100 nematodes/mL and petri dish (60 × 10 mm) arenas. Native isolates were isolated from AW larvae attacking agave crowns. Other strains evaluated were: S. carpocapsae All and Mexican, S. riobrave, and Heterorhabditis bacteriophora NC2. Native steinernematid isolates caused 100% mortality, however exotic strains caused mortality ranges between 90%, and 40%. Steinernema carpocapsae All strain, S. riobrave, H. bacteriophora NC2, and S. carpocapsae Mexican strains caused 90%, 60%, 50%, and 40% mortality, respectively. Results suggest that native steinernematid isolates, and S. carpocapsae All strain have potential as biological control agents against the AW weevil.