Search Results

You are looking at 121 - 130 of 276 items for :

  • subirrigation x
  • Refine by Access: User-accessible Content x
Clear All
Free access

Patricia R. Knight, D. Joseph Eakes, Charles H. Gilliam, and Harry G. Ponder

Seed geranium (Pelargonium × hortorum Bailey `Scarlet Elite') were grown in subirrigation troughs in 10-cm pots from 25 June to 3 August 1993. Production medium was a 1 pine bark:3 peat moss:1 perlite (v:v:v) mixture. Plants were irrigated using fresh or recycled solutions and fertilized using Peter's Geranium Special 15N-6.5P-12.5K or Osmocote 14N-6.1P-11.6K. Controlled release fertilizer produced greater shoot dry weights and foliar color ratings than plants receiving water soluble fertilizer. Plants receiving a controlled release fertilizer had lower shoot N concentrations than plants receiving water soluble fertilizer. Recycled irrigation solutions reduced plant quality regardless of method of fertilization.

Free access

Daniel I. Leskovar and Daniel J. Cantliffe

Transplants produced with overhead or subirrigation and plants from direct seeding using primed or nontreated `Jupiter' bell pepper (Capsicum annuum L.) seeds were evaluated for growth and yield in the field for 3 years. Early in development, overhead-irrigated (01) transplants had more basal root elongation than subirrigated (SI) transplants; however, root growth differences caused by irrigation systems in the greenhouse were minimized during late ontogeny in the field. Basal, lateral, and taproot dry weights accounted for 81%, 15%, and 4% of the total for transplants and 25%, 57%, and 18% of the total for direct-seeded plants. Direct-seeded plants maintained a more-balanced root, stem, leaf, and fruit dry matter partitioning than transplants, which allocated more dry weight (per unit of root growth) to stems, leaves, and fruits. Over all seasons, transplants exhibited significantly higher and earlier yields than direct-seeded pepper plants, and total yields were similar between SI and OI transplants and between primed and nontreated seeds.

Full access

John A. Biernbaum and Natasha Bos Versluys

Important components of water management for transplant production include water quality, the frequency and volume of water application, and the method of application. Water quality factors of concern are alkalinity, soluble salts including sodium absorption ratio (SAR), and ions at potentially toxic concentrations including boron and fluoride. The available water in individual transplant cells is influence by container size and geometry, medium particle size, medium moisture release characteristics, and wetting agents but is primarily determined by irrigation frequency and the amount of water applied at each irrigation. Irrigation scheduling can be done using several methods but is influenced by the crop stage, the water volume applied, and the frequency of drying desired. Transplants can be watered by hose and breaker, stationary sprinklers, traveling boom sprinklers, fog nozzles, or subirrigation. The outcome of experiments testing effects of transplant size, transplant age and fertilizer rates are all influenced by water management.

Free access

M.S. Albahou and J.L. Green

The use of the halophyte Suaeda salsa as a salt absorber in saline soils has been exploited as an attempt to increase crop productivity in marginal saline soils. The shoot and root salt contents of this halophyte has been documented to reach up to 27% and 12% of dry weights. The sodium salinity stress of the growth media [peat:vermiculite (1:1 by volume)] may be alleviated by planting the Suaeda with tomato plant in the same root pouch of a completely closed root environment, referred to as the closed insulated pallet system (CIPS). The CIPS is a continuous sub-irrigation capillary system with water moving from reservoir to rootzone in response to plant uptake. In CIPS, fertilizer reserve is placed at the top surface of the root matrix, so fertilizer ions move downward by diffusion. The objective of the present research was to utilize the Suaeda salsa as a bio-desalinator, so salinity of the growth media is reduced, thus reducing the salt uptake by the tomato cv. `Pik Red'. Two salinity levels (control and 4 g/L NaCl in the sub-irrigation water) were imposed on tomato plants or tomato grown with Suaeda in the same pouch. Sodium contents were reduced 56.4% and 37.1% in the growth media and tomato foliage, respectively, in the presence of the halophyte during a 110-day growing period. Likewise, the electrical conductivity of the growth media was reduced by 31.1% with Suaeda companionship. The Suaeda had accumulated salts up to 4.1 mg/g dry weight tissues. The results seem promising; however, growth and yield of tomato plants grown with the halophyte were significantly decreased, probably due to competition for nitrogen and/or light. Research is underway for development of the CIPS to better accomodate crop companionship.

Free access

L. Trenholm, G.T. Dodds, C.A. Madramootoo, and K. Stewart

In a 2-year study, tomato plants (Lycopersicon esculentum Mill., cv. New Yorker), grown in a sandy loam in field lysimeters, were subjected to controlled water table treatments (CWTT) of 0.3, 0.6, 0.8, and 1.0 m from the soil surface, factorially combined, in a central composite design, with 5 K–Ca fertilization combinations, replicated four times. Final shoot mass, no. fruit/plant (yield), percent marketability, fruit dimensions, and the incidence and severity of catfacing and sunscald were measured. In the first, drier year, the two higher, better-irrigated CWTT (0.3 and 0.6 m) gave higher yields, larger fruit, and higher final shoot mass, whereas in the second, wetter year, the two lower, better-drained CWTT (0.8 and 1.0 m) were best. In the dry year, the best-yielding CWTT showed the poorest marketability, while, in the wet year, the best-yielding CWTT showed the best marketability. Severity of catfacing and sunscald did not show consistent variations with CWTT. Fertilizer effects were generally not significant. Results will be discussed in the context of the use of subirrigation in field tomato production.

Free access

William R. Graves and Hongyi Zhang

Air temperature and photosynthetically active radiation (PAR) effects on relative water content (RWC), rooting percentage, root count, and root mass of unmisted, subirrigated stem cuttings of two taxa were determined. Leaf RWC of `Charm' chrysanthemum [Dendranthema ×grandiflorum (Ramat.) Kitamura] decreased until roots initiated and then increased, was lower for cuttings at 23 °C photoperiod/14 °C dark than for cuttings at 31 °C photoperiod/22 °C dark, and was lower at 193 than at 69 μmol·m–2·s–1 PAR. Neither temperature nor PAR affected leaf RWC of `Dollar Princess' fuchsia (Fuchsia ×hybrida Hort. ex Vilm.), which increased linearly before and after root initiation. Rooting percentage and root count were higher with photoperiods at 31 °C than at 23 °C for chrysanthemum after 7 days and for fuchsia after 10 days. Although all cuttings of both taxa had rooted after 14 days, root dry mass was higher with photoperiods at 31 °C than at 23 °C regardless of PAR for fuchsia and at 69 μmol·m–2·s–1 PAR for chrysanthemum. Propagators wishing to use subirrigation instead of mist, fog, or enclosure can minimize the decline in leaf RWC before root initiation and increase the number and dry mass of roots of chrysanthemum by using 69 μmol·m–2·s–1 PAR and a 31 °C photoperiod/22 °C dark cycle. Root dry mass of fuchsia also can be increased by the use of high temperature, but differences in rooting were independent of changes in leaf RWC.

Free access

Joo Hyun Lee, Yong-Beom Lee, and Kyu Sook Lee

Wasabi japonica plantlets were acclimatized in a hydroponic system to determine effective procedures. The plantlets were cultured on solid Murashige-Skoog medium with 3% sucrose. Shoots that formed roots were transplanted into hydroponic systems: 1) acclimatization in ebb-and-flow (EBB) for subirrigation (medium: granulated rockwool and coir); and 2) acclimatization in deep flow technique (DFT). The plantlets were acclimatized for 5 weeks under two irradiance treatments, 50 and 300 mmol·m-2·s-1. Photosynthetic capacity in high PPF was higher than that in low PPF during acclimatization. Electron transport rate from PS II (ETR) and biomass production increased significantly with increased light availability. The fresh weight, dry weight, and leaf area of plantlets in high PPF were higher than those in low PPF. In particular, the dry weight and ETR of the plantlets grown in high PPF increased more than twice as much as those in low PPF. At 50 mmol·m-2·s-1 PPF, growth indexes, such as number of leaves, leaf length, leaf width, leaf area, fresh weight, and dry weight, were higher in EBB (granulated rockwool) > EBB (coir culture) > DFT. At 300 mmol·m-2·s-1 PPF, those indexes were higher in DFT > EBB (granulated rockwool) > EBB (coir). The Wasabi japonica plantlets acclimatized in a hydroponic system also had a superior performance when they were transferred to the field.

Full access

William R. Argo, Brian J. Weesies, Erica M. Bergman, Michelle Marshal, and John A. Biernbaum

The rhizon soil solution sampler (RSSS) currently is being used for in situ extraction of the soil solution for nutrient analysis of mineral soils used to produce field-grown crops. In this study, laboratory and greenhouse experiments were conducted to test the effectiveness of the RSSS for in situ solution extraction from soilless container root media and to compare an RSSS extraction method for measuring root-medium pH, electrical conductivity (EC), and NO3-N and K concentrations with that measured with the saturated media extract (SME) method. A near 1:1 correlation was found between the pH, EC, and NO3-N and K concentrations measured in the extracted solution of the RSSS and SME method in media without plants and in media from ten species grown using three water-soluble fertilizer concentrations applied by subirrigation. More testing is needed with the RSSS, perhaps using composite samples form several pots for analysis. The RSSS shows promise for nutrient extraction in container-grown crops because it is fast, nondestructive, simple, economical, and has minimal effect on the nutritional status of the medium in the pot.

Free access

Peter R. Hicklenton and Kenneth G. Cairns

Containerized Cotoneaster dammeri `Coral Beauty' and Forsythia `Northern Gold' were grown in a 2 bark: 1 peat: 1 sand (by volume) medium containing 5 kg·m–3 Nutricote 16N–4.4P–8.1K, Type 140, under four irrigation regimes: drip (DR; 20 min/day; two periods), overhead (OV; 90 min/day; two periods), overhead pulse (OP; 28 min/day; four periods), and subirrigation (SU). Volumes of 0.33, 0.35, and 0.14 liters·day–1 were delivered to each container in the DR, OV, and OP systems, respectively. SU was supplied from a geotextile-covered sand bed. End-of-season dry weights of Cotoneaster and Forsythia were 41% and 55% greater, respectively, in SU-grown plants compared to their OV-irrigated counterparts. Differences in growth between the other three regimes were minor for both species. Pre-dawn and dusk water potentials did not differ between plants in the four regimes, but midday potentials were slightly lower in SU- and DI-irrigated plants. End-of-season foliar N and P content differed only slightly between irrigation treatments, but K levels were significantly higher in SU plants. The reasons for better growth under SU remain obscure but may be related to improved medium nutrient retention and improved fertilizer use efficiency under an irrigation regime in which water moves upwards from the pot base to top.

Free access

Jack W. Buxton, Wenwei Jia, and Guoqiang Hou

The automatic subirrigation system consists of a capillary mat placed above a constant water level in a reservoir. The optimum mat height above the water level was established by slanting a flat surface so the difference in vertical height from one end of the surface to the other was 25 cm. A ground cover providing water movement but not root penetration was placed over the mat. The capillary mat extended beyond the lowest end of the slopped surface and into the reservoir, the mat at the lowest end of the slopped surface was at the same vertical height as the water in the reservoir and remained constantly saturated. Plug trays were placed at intervals of 2.5 cm in vertical height above the water level. An average of 96-100% germination was obtained with marigold, tomato, impatiens and pepper seed in trays placed 5-7.5 cm in vertical height above the water level. These seedlings continued to develop and reached transplanting stage quicker than other trays. The rate and % germination was less in trays placed on the surface nearer to the height of the water in the reservoir. Germination in trays above 12.5 cm was greatly reduced and seed that did germinate did not develop and eventually died.