Search Results

You are looking at 101 - 110 of 276 items for :

  • subirrigation x
  • Refine by Access: User-accessible Content x
Clear All
Free access

Thomas B. Bruning, Michael H. Chaplin, and Henry G. Taber

Ground water contamination resulting from continuous liquid fertilization technologies is a serious problem facing greenhouse growers in the United States. Rooted Dendranthema grandiflora Tzvelev. cultivar 'Iridon' cuttings were transplanted into 11 cm pots filled with a 50% peatmoss and 50% perlite (v/v) media containing 0.10, 0.21, 0.42, or 0.84 g N from a controlled release 12-10-17 plus minors fertilizer deposited directly below the transplanted cutting. Pots were assigned to a top-water or subirrigation treatment.

Subirrigation reduced the nitrate leachate concentration by as much as 250 ppm as compared with top-watering. Fertilizer N rate linearly decreased plant height in both of the irrigation treatments. Final dry weight of the shoot peaked at the 0.21 g N rate in both the irrigation treatments.

Free access

C. D. Stanley and G. A. Clark

The use of the recently developed fully-enclosed seepage subirrigation system for fresh market tomato production has demonstrated an improved ability to maintain a water table at a desired level (when compared to conventional ditch-conveyed seepage subirrigation) by means of more precisely controlled application and a greater uniformity throughout the field. This is achieved through use of microirrigation tubing rather than open ditches to convey water to raise the water table to desired levels. When manually controlled, the system has shown to save 30-40% in irrigation amounts primarily due to almost total elimination of surface runoff. An automated control system was designed and evaluated with respect to practicality, durability, and performance of various designs of level-sensing switches. The advantages and limitations of the designs in relation to water table control for tomato production will be presented.

Full access

J.W. Prevatt, G.A. Clark, and C.D. Stanley

Three vegetable irrigation systems, semi-closed subirrigation (seepage), fully enclosed subirrigation (seepage), and drip irrigation, were evaluated for use on sandy soils with naturally high water tables to determine comparative irrigation costs for tomato production. Investment, fixed (ownership), and variable (operating) costs were estimated for each irrigation system. The investment costs of the drip irrigation system were significantly greater than those for the semi-closed and fully enclosed irrigation systems. The variable costs, however, for the semi-closed system were considerably less than those for the fully enclosed and drip irrigation systems. The semi-closed irrigation system, therefore, was determined to be the least-cost tomato irrigation system under present fuel cost and nonlimiting water supply conditions.

Free access

Jaime K. Morvant, John M. Dole, and Janet C. Cole

Euphorbia pulcherrima `Gutbier V-14 Glory' were grown with 220 mg·liter–1 N (20N–4.4P–16.6K) using ebb-and-flow (EF), capillary mat (CAP), microtube (MIC), and hand-watering (HAN) and were irrigated either daily (pulse - P) or as needed (regular - R). For all irrigation systems, pulse irrigation produced the greatest total dry weight. HAN-R produced lower total dry weight than all other irrigation systems and frequencies. Root dry weight was highest with pulse subirrigation (EF and CAP). MIC-P, EF-P, and EF-R were the most water-efficient treatments. The experiment was repeated twice with similar results. In a second experiment, Pelargonium ×hortorum `Pinto Red' root balls were sliced into three equal segments; top, middle, and bottom. For all irrigation systems, root counts were lowest in the top region. EF root counts were greatest in the middle region, while MIC root counts were greatest in the bottom region. The two subirrigation systems had higher average root counts than the two top-irrigated systems (HAN and MIC). In general, there was less difference in EC between regions for top-irrigated than for subirrigated root balls. The EC was lowest in the bottom and middle regions of EF and the bottom region of MIC and CAP. For subirrigation, the highest EC was in the top region. For all systems, pH was lowest in the bottom region.

Free access

Troy M. Buechel, David J. Beattie, and E. Jay Holcomb

A characteristic problem with peat moss is its difficulty in initial wetting and rewetting, especially in a subirrigation system. Wetting agents improve wetting characteristics primarily by reducing the surface tension of water. This results in a rapid, uniform movement of water by capillary rise through the growing medium.

Two methods were used to compare the effectiveness of different wetting agents: gravimetric and electrical. Ten cm pots containing peat moss were placed in a subirrigation system. The gravimetric method used a laboratory scale where pots were periodically weighed to determine the amount of water absorbed. The electrical method utilized thin beam load cells, which have strain gages bound to the surface, to determine the weight of a suspended object. Load cells were coupled with a Campbell Scientific datalogger to collect data every minute without removing the pot from subirrigation. Because the effect of buoyancy altered the true weights, equations were generated to adjust the water uptake values. Corrected weights were used to create absorption curves for comparison of the slopes to determine which wetting agent has the fastest rate of absorption. The load cell reliably and accurately described the wetting characteristics of Peat moss and we found good agreement with the gravimetric method.

Free access

John Kabashima

Several production nurseries were surveyed about techniques used to reduce water usage and runoff. The nurseries surveyed used from 400,000 gallons of water per day to 5,000,000 gallons of water per day during peak usage. Water availability and the potential for nitrate runoff from large production nurseries to contaminate the environment have resulted in requirements by regulatory agencies to decrease water usage and runoff. Nurseries have complied by using techniques such as drip irrigation, subirrigation, pulsing, recycling, and computer controlled irrigation systems. The use of techniques such as recycling and “better management practices” have resulted in significant decreases (approximately 30%) in water usage.

Free access

Marc van Iersel and Jong-Goo Kang

Subirrigation is an economically attractive irrigation method for producing bedding plants. Because excess fertilizer salts are not leached from the growing medium, salts can accumulate in the growing medium. Fertilizer guidelines developed for overhead irrigation may not be appropriate for subirrigation systems. Our objective was to quantify the effect of the fertilizer concentration (N at 0, 135, 285, and 440 mg·L–1) on whole-plant CO2 exchange and growth of subirrigated pansies. Whole plant CO2 exchange rate (net photosynthesis and dark respiration) was measured once every 10 min for 31 days. Whole-plant photosynthesis, dark respiration, and carbon use efficiency increased during the experiment. Fertilizer concentration started to affect the growth rate of the plants after approximately 7 days. Maximum photosynthesis and growth were achieved with N at about 280 mg·L–1 in the fertilizer solution [electrical conductivity = 2 dS·m–1]. Growth was reduced by ≈10% when the plants were fertilized with N at 135 and 440 mg·L–1 compared to 280 mg·L–1. Growth of plants watered without any fertilizer was greatly reduced, and plants showed symptoms of N and K deficiency. The size of the root system decreased and the shoot: root ratio increased with increasing fertilizer concentration, but the size of the root system was adequate in all treatments. These results indicate that subirrigated pansies can tolerate a wide range of fertilizer concentrations with relatively little effect on plant growth.

Full access

Jaime K. Morvant, John M. Dole, and Earl Allen

Pelargonium hortorum Bailey `Pinto Red' plants were grown with 220 mg·L−1 N (20N-4.4P-16.6K) using hand (HD), microtube (MT), ebb-and-flow (EF), and capillary mat (CM) irrigation systems. At harvest, root balls were sliced into three equal regions: top, middle, and bottom. A negative correlation existed between root medium electrical conductivity (EC) and N concentration to root number such that the best root growth was obtained with low medium EC and N concentrations. EF root numbers were greatest in the middle region. The two subirrigation systems (EF and CM) had higher average root numbers than the two surface-irrigation systems (HD and MT). For all irrigation systems, root numbers were lowest in the top region. In general, less difference in medium soluble salt and N concentrations existed between regions for surface-irrigated than for subirrigated root balls. Soluble salt concentration was lowest in the bottom and middle regions of EF and the bottom region of MT and CM. For subirrigation, the highest medium soluble salt and N concentration was in the top region. For all systems, pH was lowest in the bottom region. Plant growth for all irrigation systems was similar. EF and MT systems required the least water and EF resulted in the least runoff volume.

Free access

William R. Argo and John A. Biernbaum

Hybrid impatiens were grown in 15 cm pots containing one of six root medium. After seven weeks, plant available water holding capacity (AWHC) was measured as the difference between the drained weight of the plant and pot after a one hour saturation and the weight of the pot when the plant wilted. Water absorption potential (WAP) was calculated as the capacity of each root medium to absorb applied irrigation water up to the AWHC and was measured at two moisture levels with top watering (two leaching fractions), drip irrigation (two leaching fractions) and flood subirrigation. Top watering moist media (initial AWHC = 35%) with leaching fractions of 30+ % was me most efficient method of rewetting media and was the only irrigation method tested to obtain WAP's of 100%. In comparison, flood subirrigation was the least efficient method of rewetting media with WAP of 27% for dry media (initial AWHC = 0%), and obtained a total WAP of 55% for moist media (initial AWHC = 23%). In media comparisons, the incorporation of a wetting agent into a 70% peat/30% bark mix at planting increased the WAP compared to the same media without a wetting agent with nine of the ten irrigation treatments.

Free access

M.S. Albahou and J.L. Green

Incidence of blossom-end rot (BER) of tomato is known to increase with increasing salinity in hydroponics and field tomato crops due to osmotic stress and imbalanced ionic ratio in the media solution. The present investigation evaluated salinity effects on the occurrence of BER of tomato in a completely closed root environment known as the closed insulated pallet system (CIPS). The CIPS is a continuous sub-irrigation capillary system with water moving from reservoir to rootzone in response to plant uptake and loss through transpiration and growth. In CIPS, fertilizer reserve is placed at the top surface of the root matrix, so fertilizer ions move downward by diffusion. Various tomato genotypes were seeded directly into CIPS in Spring. The experiment was terminated at a 100-day growing period. The incidence of BER was calculated as percent affected fruits. Salinity treatments consisted of five concentrations ranging from 0 to 10 g/L NaCl. One salinity treatment was 1 g/L CaCl2. In CIPS, the salt gradient created by uptake of saline water had lowest concentration at the top of root compartment where fertilizer was placed. Therefore, there was minimal ionic interactions between fertilizer ions and ions from the saline water. The uptake of water and plant growth decreased with increasing salinity concentration. The addition of Ca in the sub-irrigation water had no effect on the occurrence of BER. The incidence of BER correlated negatively with salinity level and plant growth in the CIPS.