Multiple shoots were obtained from shoot tips (2 to 3 mm) derived from mature plants (5 to 6 years old) of Citrus reticulata Blanco cv. Khasi mandarin and C. limon Burm.f. cv. Assam lemon when cultured on Murashige and Skoog (MS) medium, supplemented with (mg·liter-1) 1.0 BAP, 0.5 kinetin, and 0.5 NAA. Root induction was observed when 7-week-old single shoots (≈ 2 cm long) of both Citrus species were cultured on MS medium supplemented with (mg·liter-1) 0.25 BAP, 0.5 NAA, and 0.5 IBA. These plantlets were successfully established in the soil. Chemical names used: naphthalene acetic acid (NAA), indole 3-butyric acid (IBA), and benzylamino purine (BAP).
Hypericum perforatum L. (St. John's Wort) has an extensive history as an important medicinal herb used for the treatment of neurological and depressive disorders (Linde et al., 1996). The objective of this study was to establish an in vitro tissue culture protocol for St. John's Wort. Nodal segments, axillary buds, and leaf disc explants produced multiple shoots and callus on Murashige and Skoog minimal organics medium supplemented with combinations of indoleacetic acid (IAA; 0.57, 2.85, 5.71 μm) and benzylaminopurine (BA; 2.22, 4.44, 8.88 μm). Shoot production occurred on all combinations of IAA/BA tested and was significantly less in treatments without hormones. Callus production was higher on treatments containing 2.85 μm IAA + 4.44 μm BA, or 5.71 μm IAA + 8.88 μm BA. Shoots transferred to hormone-free medium at 8 weeks formed roots by 12 weeks. A micropropagation protocol was established for St. John's Wort using mature plants as the explant source.
Prohexadione-Ca (BAS 12511W or Apogee™ Plant Growth Regulator) acts within a plant by blocking the biosynthesis of growth-active gibberellin. The result is decreased cell and shoot elongation; thus, vegetative growth in apple trees can be reduced. Air blast applications of prohexadione calcium were made in the Spring 1998 in commercial orchards. Application rate was 125 ppm a.i. applied twice beginning at 5 to 12 cm of new shoot growth. Reduction of shoot growth averaged 45% across locations. As a result of reduced vegetative growth, dormant pruning was reduced. In total, significant benefits to the grower included reduced pruning costs in addition to other positive effects such as improved light penetration and enhanced resistance to some pathogens. Research will continue with the effect of prohexadione-Ca on pruning in multiple year studies.
Hypocotyl explants of three cultivars of melon (Cucumis melo L.) (cvs. Revigal, Topmark and Kirkagac), and a cucumber (C. sativus L. cv. Taoz) rapidly directly regenerated multiple shoots on Murashige and Skoog medium augmented with 4.4 μm benzyladenine. Regeneration from the hypocotyl resulted in nearly 100% diploid shoots, whereas regeneration from the cotyledons resulted in 40% to 70% polyploid regenerants. Regeneration from cotyledon explants of melon cv. Revigal required light, whereas regeneration from hypocotyl explants of melon cv. Revigal occurred in both light and darkness. Direct regeneration also occurred from the hypocotyl of cucumber cv. Taoz in both light and darkness, even though cotyledonary explants did not regenerate buds or shoots under the same conditions. This is the first report of regeneration from the Cucumis genus producing a fully diploid plant population.
Rootstock significantly alters the pattern of shoot growth of pistachio (Pistacia vera) cv. Kerman. Trees on P. atlantica typically produce a single flush of spring growth whereas trees on P. integerrima selection PGI and P. atlantica × P. integerrima selection UCB-1 can produce multiple flushes during the season. Terminal buds of shoots on all three rootstocks were dissected during the dormant season to determine the number of preformed nodes. Data indicate that there are 8-9 nodes preformed in the dormant terminal bud of shoots from Kerman trees and that this number is independent of rootstock, canopy location, crop load, and shoot carbohydrate concentration, suggesting genetic control. This number corresponds with the number of nodes typically found on a shoot at the end of the spring growth flush. Unlike the spring flush which is preformed in the dormant bud, later flushes are neoformed, that is, nodes are initiated and extended during the same season. Neoformed growth depends on current season photosynthates and may compete with fruit growth for available resources. Neoformed growth is sensitive to water stress and trees on all three rootstocks grown under two levels of regulated deficit irrigation showed a reduction in both the number and length of neoformed shoots. Preformed shoot growth did not appear to be reduced under water stress conditions, supporting the hypothesis that preformed shoots are more dependent on environmental conditions during the season they are initiated than during the season they are extended. Additionally, preformed shoots on well irrigated trees were similar in length for all rootstocks, further supporting the idea that preformed shoots are under genetic control and are not easily manipulated.
Near-infrared (NIR) reflectance spectroscopy was used to determine the chemical composition of fruit and nut trees. Potted almond and bench-grafted Fuji/M26 trees were fertigated during the growing season with different N levels by modifying the Hoagland to create different levels of nitrogen and carbohydrates in plant tissues during dormancy. Dried, ground, and sieved shoot, shank, and root samples were uniformly packed into NIR cells and scanned with a Foss NIRSystem 6500 monochromator from 400 to 2500 nm. Statistical and multiple linear regression methods were used to derive a standard error of performance and the correlation between NIR reading and standard chemical composition analysis (anthrone, Kjedahl and Ninhydrin methods for carbohydrate, total N, and amino acid analysis, respectively) were determined. The multiple determination coefficients (R 2) of apple and almond tissues were 0.9949 and 0.9842 for total nitrogen, 0.9971 and 0.9802 for amino acid, and 0.8889 and 0.8687 for nonstructural carbohydrate, respectively.
Regeneration in vitro from the embryonic axis in Phaseolus sp. has not been reported. Two embryo sizes, 0.3-0.4 mm and 0.6-0.7 mm long at 10-12 and 21 days after pollination, respectively, were excised from 4 P. vulgaris (P.v.) and 2 P. acutifolius (P.a.) genotypes. The embryonic leaves and radicale were removed, and 0.1-0.2 mm of the embryonic axis was cultured on Gamborg's B5 medium with 0, 5, 10 and 20μ MBA. The cultures were incubated in the dark at 25°C for 2 weeks followed by 1 week in continuous cool white light (25μ MS-1m2) before transferring to the second medium (0, 2μ MBA and 2μ MBA + 4μ MGA3). The tissues from the larger embryos initiated a single shoot without PGR in 30% of 1 P.v. explants and 30-60% in 2 P.a. The other 3 P.v. formed roots only. Multiple shoots were initiated in all P.v. (15-60%) and in 2 P.a. (60 and 70%) with 5 or 10μ MBA. The tissues from the smaller embryos had single shoots for all genotypes (30-60%) without PGR. Multiple shoots were initiated in 50-80% and 75-90% of the explants from P.v. and P.a., respectively, with 5 or 10μ MBA. Excess callus formed with 20μ MBA and regeneration decreased. After 3 weeks on the second medium, 6-8 shoot s/P. v. and up to 15-20 shoots/Pa. explants were observed.
Clonal propagation of pawpaw is currently limited to budding and grafting. A tissue-culture system to rapidly produce clonal material would be valuable for both production and preservation of germplasm. Forced scion wood, shoots from root cuttings, and seedlings were explant sources for ontologically mature, intermediate, and juvenile ages, respectively. Preliminary data indicated that nodal explants had more rapid adventitious shoot formation than shoot tip explants. Disinfestation protocols were developed for each explant source. Nodal explants were cultured on MS medium supplemented with 10 μM BA and 0.1 μM TDZ. Within 3 weeks, 60% of the seedling explants had expanded axillary buds, while no bud expansion was observed for explants of either the intermediate or mature sources. By 6 weeks, seedling axillary shoots had elongated and were suitable for subculture. By 8 weeks, multiple adventitious buds and shoots had formed on all seedling explants. At this same time, axillary shoots began to elongate on intermediate source explants, but mature source explants appeared to be recalcitrant. Explant exudation caused medium darkening, but, by reducing the transfer interval from 4 to 2 weeks, discoloration was minimized. Mature source explants were maintained in culture and after ≈7 months, axillary bud expansion occurred in a small percentage of these explants.
Several rose species (Rosa rugosa, R. wichuraiana, R. setigera, R. laevigata, R. banksiae, R. roxburghii, R. odorata and hybrids) were employed to establish the appropriate nutrient media for shoot multiplication and root initiation of cultured shoots and to describe a procedure for the successful transfer to soil of plants obtained in vitro. Cultured shoot tips and lateral buds from different genotypes proliferated multiple shoots on a basal medium (MS salt, vitamins, glycine, sucrose and agar) supplemented with 0mg/l to 6mg/l 6-benzylamino purine (BA) and 0mg/l to 0.5 mg/l naphthalene acetic acid (NAA). Most rose species cultured in a modified MS medium supplemented with 2mg/l BA showed good growth and shoot proliferation. The buds nearest the apex exhibited the slowest rate of bud development. Root development was enhanced and shoot development inhibited by lowering the concentration of MS salts to quarter- and half-strength. With difficult-to-root species, rooting was improved by supplementing the media with auxin or giving them 3-7days of dark treatment.
Abstract
A protocol for in vitro propagation was developed with two dry bean (Phaseolus vulgaris L.) cultivars. Shoot cultures were initiated by placing seedling shoot tips (1.0 to 1.5 cm) on Murashige and Skoog (MS) medium in which the effects of kinetin and BA alone or in combination with IAA or NAA were examined with regard to shoot multiplication and root or basal callus formation. The combination of BA (3.0 mg liter–1) and NAA (0.1 mg·liter–1) was most effective in shoot multiplication. At high concentrations of BA or kinetin (>10 mg·liter–1), shoot production and internode elongation decreased markedly and rosette-like cultures with multiple buds developed. Shoots were rooted on basal MS medium. Ramets grew to maturity in the greenhouse or field and produced fertile flowers, pods, and seeds. Chemical names used: N-(2-furanylmethyl)-1H-purin-6-amine (kinetin); N-(phenylmethyl)-1H-purin-6-amine (BA); 1H-indole-3-acetic acid (IAA); 1-naphthaleneacetic acid (NAA).