( Tulipa hybrids) and dutch iris ( Iris × hollandica ) are popular cut flower species commonly produced during cool spring seasons. These species have a relatively short storage and vase life ( Dole et al., 2017 ). Forcers can achieve a longer stem length
treatment of 27 rose cultivars with 0.5 μL·L −1 ethylene for 2 d accelerated, inhibited, or had no effect on rates of flower opening. The effects of ethylene on vase life were, however, not reported. Observations by commercial growers suggest that current
nature of cut flowers, the time spent in transit and transportation conditions adversely affect cut flower postharvest vase life ( Dole and Wilkins, 1999 ). The highly perishable nature of cut flowers amplifies the importance of postharvest vase life
the management of postharvest B. cinerea infection and postharvest vase life of bigleaf hydrangea cut flowers. The fungicides and biorational products were also assessed for phytotoxicity and application residue on cut flowers. The results of this
, timing, vase life, weak stems, and zinnia meltdown ( Tables 8 – 10 ). Hydration was a problem for the postharvest of blue flossflower (10.0%), delphinium (11.1%), hydrangea (28.3%), viburnum (16.7%), and yarrow (20%). None of these species hydrate easily
containing 300 mL of vase solution. Stem ends of the flowers pulsed with sucrose solution were rinsed with tap water to remove excessive sugar attached with the stems to reduce microbial contamination, before placing in jars. Stems were kept in a vase life
Abstract
Typically, wilting symptoms are associated with termination of vase life of most cut flowers (8), suggesting that water relations are of importance, especially when it concerns an advanced phase of vase life.
were sensitive to ethylene. van Meeteren et al. (1995) reported the relationships between carbohydrate and vase life of Freesia flowers. Very little is known, however, about the respiration characteristics and the physiological metabolisms during
Abstract
The presence of very low concentrations of ethylene had dramatic effects on the opening of cut flowers of rose (Rosa hybrida L.). Depending on cultivar, the rate of opening was unaffected (e.g., ‘Gold Rush’), accelerated (e.g., ‘Sterling Silver’), or inhibited (e.g., ‘Lovely Girl’). The K m for the inhibition of opening of ‘Lovely Girl’ by ethylene was 4 ppb. Flowers of some cultivars (e.g., ‘Royalty’) had an abnormal shape when opened in the presence of ethylene. The effects of exogenous ethylene could be overcome by pretreatment of the flowers with 0.5 μmol silver thiosulfate per stem. No phytotoxicity was observed in flowers treated with 2 μmol per stem. Examination of the kinetics of the ethylene/Ag+ interaction in inhibition of opening of ‘Lovely Girl’ flowers indicated that the Ag+/ethylene interaction was competitive.
Abstract
Various silver containing solutions were evaluated for their effectiveness in extending the life of cut carnations (Dianthus caryophyllus, L. ‘Improved White Sim’) by simple chemical tests of the solutions. Effective solutions formed an immediate white or yellow precipitate (AgI) when 3.0 ml of the solution reacted with 0.15 ml of 2.0 m KI solution, whereas no precipitate formed when reacted with 0.15 ml of 2.0 m NaCI solution. When no precipitate formed with KI, there was insufficient silver in the solution to extend flower life, and hence, no silver was detected in a combined stem and leaf sample or in the flower head (consisting of receptacle, pistil, bracts, calyx and petals). A precipitate forming with both KI and NaCI indicated that the solution contained silver but in the wrong formulation to extend life. Flowers treated with this solution had silver in the combined stems and leaves, but practically none in heads. When solutions were effective, more silver was detected in heads than in the stems and leaves combined.