Search Results

You are looking at 91 - 100 of 207 items for :

  • "relative growth rate" x
  • Refine by Access: User-accessible Content x
Clear All
Free access

Douglas D. Archbold

Plants of a diverse collection of Fragaria clones from a range of native habitats representing F. chiloensis, F. virginiana, F. virginiana glauca, and F. vesca, were grown in a controlled environment at one of three day/night temperatures, 15/15, 23/15, or 31/15°C. Relative growth rate (RGR) and net assimilation rate (NAR) were estimated from plant leaf areas and total dry weights. At 23/15°C, the species mean RGR and NAR values were comparable although clones within species exhibited significant variation. At 15/15 and 31/15°C, RGR and NAR for species were lower than at 23/15°C. At 31/15°C, chiloensis and vesca mean values were reduced more than the others, to less than 50% the 23/15°C values. Also, NAR declined most for chiloensis, to 45% the 23/15°C value. At 15/15°C, virginiana had much higher RGR and NAR values than the other species, and its NAR mean value was greater than at 23/15°C. Although the species means would suggest that there are interspecific differences in temperature response, intraspecific variability was also large. Thus, classifying Fragaria species by temperature response may be an over-generalization.

Free access

Andres A. Estrada-Luna, Fred T. Davies Jr., and Jonathan N. Egilla

Micropropagated chile ancho pepper (Capsicum annuum L. cv. San Luis) plants were transferred to ex vitro conditions to study plantlet performance and selected physiological changes that occur during acclimatization and post-acclimatization. The physiology of the plantlets was characterized by measuring leaf gas exchange and water status. Plant growth was determined by assessing plant height, leaf number, total leaf area, relative growth rate (RGR), and leaf, root, and stem dry mass. Measurements were taken at 0, 1, 2, 3, 6, 12, and 24 days after transplanting. After initial transplanting ex vitro to liner pots with soilless media, plantlet wilting was observed that correlated with reduced leaf relative water content (RWC). Water stress was partially alleviated by a reduction in stomatal conductance (gs), confirming that the in vitro formed stomata were functional and able to regulate transpiration (E) to minimize desiccation losses. Because of this stomatal control, plantlets had minimal transplant shock, recovered, and survived. Prior to transplanting, micropropagated plantlets showed heterotrophic/mixotrophic characteristics as indicated by low photosynthesis [(A) 4.74 μmol·m2·s-1]. During acclimatization, RWC, gs, E, and A were significantly lower 2 days after transplanting. However, within 6 days after transplanting, plantlets recovered and became autotrophic, attaining high A (16.3 μmol·m-2·s-1), gs, and E. The stabilization and improvement of plantlet water status and gas exchange during acclimatization and post-acclimatization closely correlated with dramatic increases in plantlet growth.

Free access

Michael S. Dosmann, William R. Graves, and Jeffery K. Iles

The limited use of the katsura tree (Cercidiphyllum japonicum Sieb. & Zucc.) in the landscape may be due to its reputed, but uncharacterized, intolerance of drought. We examined the responses of katsura trees subjected to episodes of drought. Container-grown trees in a greenhouse were subjected to one of three irrigation treatments, each composed of four irrigation phases. Control plants were maintained under well-hydrated conditions in each phase. Plants in the multiple-drought treatment were subjected to two drought phases, each followed by a hydration phase. Plants in the single-drought treatment were exposed to an initial drought phase followed by three hydration phases. Trees avoided drought stress by drought-induced leaf abscission. Plants in the multiple- and single-drought treatments underwent a 63% and 34% reduction in leaf dry weight and a 60% and 31% reduction in leaf surface area, respectively. After leaf abscission, trees in the single-drought treatment recovered 112% of the lost leaf dry weight within 24 days. Leaf abscission and subsequent refoliation resulted in a temporary reduction in the leaf surface area: root dry weight ratio. After relief from drought, net assimilation rate and relative growth rate were maintained at least at the rates associated with plants in the control treatment. We conclude that katsura is a drought avoider that abscises leaves to reduce transpirational water loss. Although plants are capable of refoliation after water becomes available, to maintain the greatest ornamental value in the landscape, siting of katsura should be limited to areas not prone to drought.

Free access

Maria A. Macias-Leon and Daniel I. Leskovar

Onions (Allium cepa L.) are easily outcompeted by weeds because of slow germination and relative growth rates. Therefore, high percentage of seed germination and root vigor are important traits to improve field performance. The effects of exogenous plant growth regulators (PGRs), 2-chloroethylphosphonic acid (ethephon, Eth), indole-3-acetic acid (IAA), trans-zeatin (tZ), and 1-aminocyclopropane-1-carboxylic acid (ACC) were evaluated on the germination and root growth of ‘Don Victor’ (yellow) and ‘Lambada’ (red) onion seedlings. Seeds were soaked for 10 hours in hormonal solutions and water (hydro-priming). Seed germination improved with Eth (30 and 100 μm), Eth (100 μm) + IAA (10 μm), and IAA (3 μm) treatments. Root surface area (RSA) increased in response to Eth at 30 and 100 μm, Eth + IAA, and 3 μm IAA. Root length (RL) and root diameter (RD) were enhanced by 1 μm tZ and 100 μm ACC. Eth reduced RL and RD, whereas IAA showed no effects. A subsequent experiment evaluated synergistic effects of different PGRs. Treatment of seeds with ACC (250 μm) + tZ (0.5 μm) and ACC (250 μm) + tZ (0.5 μm) + Eth (20 μm) enhanced RL and RD. RSA was unaffected by ACC + tZ + Eth. The results suggest that exogenous PGRs could be useful to enhance germination, RL, and RSA of onion seedlings.

Free access

Meriam G. Karlsson and Royal D. Heins

The relative progression of lateral shoot elongation from pinch to flower of chrysanthemum [Dendranthema grandiflora (Ramat.) Kitamura `Bright Golden Anne'] plants grown under 2 to 22 mol·day-1·m-2 photosynthetic photon flux and 10 to 20C was modeled using Richards function. Parameters for the function were determined by first transforming data of shoot length and time from pinch (start of short photoperiods) to flower to a relative scale of 0.0 to 1.0 by dividing all intermediate shoot lengths and measurement dates by final shoot length and number of days to flower, respectively. Data used for parameter estimation originated with plants grown at a daily average of ≤20C, since those grown at a daily average above 20C exhibited delayed morphological flower induction and reached 50% of the final shoot length earlier in development. Relative shoot elongation was described by Richards function in the following form: Relative shoot length = SF × {1 + [(SF/SO)N-1] e-SF Kt}-1/N where t (relative time) = 0.0 to 1.0, SF (maximum relative shoot length) = 1.018, SO (relative shoot length at t = o) = 0.0131, N (model parameter related to the shape of the curve) =0.3923, and K (model parameter related to mean relative growth rate) = 5.8138.

Free access

Mario Pérez-Grajales, Víctor A. González-Hernández, Ma. Carmen Mendoza-Castillo, Cecilia Peña-Valdivia, Aureliano Peña-Lomelí, and Jaime Sahagún-Castellanos

Six manzano hot chile pepper landraces (Capsicum pubescens R & P) were evaluated to identify genotypes which might contribute toward obtaining superior hybrids by providing the following characteristics: low height, short internodes, rapid biomass accumulation, high harvest index, high fruit quality, and high photosynthetic rate. The landraces studied were `Chiapas', `Huatusco I', `Huatusco II', `Perú', `Puebla', and `Zongolica'. Plants were grown in a shaded glasshouse for 9 months, with drip irrigation. Growth, biomass distribution, fruit quality and yield were determined. All varieties exhibited advantageous characteristics, i.e., large fruit (60 mL) with thick pericarp (4.2 mm) in `Puebla'; short internodes (10 cm) in `Zongolica' and `Huatusco II'; high harvest index (0.24), high yield (18 to 19 t·ha−1) and high relative growth rates (0.12 g·g−1·d−1) in `Perú' and `Puebla'; and high dry mass accumulation (450 g/plant) in `Chiapas'. The highest photosynthesis rate in manzano hot pepper was 7.7 μmol of CO2/m2/s at 500 μmol photons/m2/s, in `Zongolica' and `Puebla'.

Free access

Nader Soltani, J. LaMar Anderson, and Alvin R. Hamson

`Crimson Sweet' watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] plants were grown with various mulches and rowcovers and analyzed for relative growth rate (RGR), net assimilation rate (NAR), specific leaf area (SLA), leaf area index (LAI), and crop growth rate (CGR). Spunbonded polyester fabric (SB-PF) and perforated polyethylene film (PCP) rowcovers generally showed greater mean RGR, SLA and CGR than spunbonded polypropylene polyamide net (SB-PP), black plus clear combination plastic mulch and black plastic mulch alone. Plants on mulches and under rowcovers showed significant increases in RGR, NAR, and SLA over plants grown in bare soil. Carbon dioxide concentration inside the transplanting mulch holes was nearly twice the ambient CO, concentration. Growth analysis of sampled watermelon plants during early stages of development under various treatments was predictive of crop yield. Plants under SB-PF and PCP rowcovers produced the earliest fruit and the greatest total yield. An asymmetrical curvilinear model for watermelon growth and development based on cardinal temperatures was developed. The model uses hourly averaged temperatures to predict growth and phenological development of `Crimson Sweet' watermelon plants grown with and without rowcovers. Early vegetative growth correlated well with accumulated heat units. Results indicate a consistent heat unit requirement for the `Crimson Sweet' watermelon plants to reach first male flower, first female flower and first harvest in uncovered plants and plants under rowcovers. Greater variability was observed in predicting date of first harvest than first bloom.

Free access

A. Naor, I. Klein, I. Doron, Y. Gal, Z. Ben-David, and B. Bravdo

The interaction between irrigation and crop load with respect to fruit size distribution was investigated in a `Golden Delicious' apple (Malus domestica Borkh) orchard located in a semi-arid zone. Irrigation levels during the main fruit expansion phase ranged from 0.42 to 1.06 of the Class A pan evaporation coefficient. Crop load was adjusted to 100 to 450 fruit/tree in the 1250 trees/ha orchard by hand thinning. Total yield was not affected by irrigation level up to a crop load of 200 fruit/tree. Yield of all grades >65 mm was affected by irrigation level for higher crop densities. The yield of fruit of diameter <75 mm was not affected by increasing the Class A pan evaporation coefficient above 0.75. Our data indicate that availability of assimilates may limit the size of fruit with potential to grow larger than 70 mm in diameter at all crop loads higher than 200 fruit/tree. This limitation increases with decreasing irrigation level. The volumetric relative growth rate (VRGR) increased with irrigation level and with decreasing crop load. VRGR was more affected by crop load than by irrigation level in the ranges studied.

Free access

J.A. Anchondo, M.M. Wall, V.P. Gutschick, and D.W. Smith

Growth and yield responses of `New Mexico 6-4' and `NuMex R Naky' chile pepper [Capsicum annuum L. var. annuum (Longum Group)] to four Fe levels were studied under sand culture. A balanced nutrient solution (total nutrient concentration <2 mmol·L-1) was recirculated continuously to plants potted in acid-washed sand from the seedling stage to red fruit harvest. Plants received 1, 3, 10 or 30 μm Fe as ferric ethylenediamine di-(o-hydroxyphenyl-acetate). Plant growth was determined by leaf area, specific leaf area [(SLA), leaf area per unit dry weight of leaves], instantaneous leaf photosynthetic rates, and dry matter partitioning. Low Fe (1 or 3 μm Fe) in the nutrient solution was associated with lower relative growth rates (RGR), increased SLA, and higher root to shoot ratios (3 μm Fe plants only) at final harvest. High Fe levels (10 or 30 μm Fe) in the nutrient solution were associated with an increased yield of red fruit and total plant dry matter. RGR of low-Fe young chile plants was reduced before any chlorotic symptoms appeared.

Free access

Michel Génard and Claude Bruchou

An approach to studying fruit growth is presented for peach fruit (Prunus persica L. Batsch). It combines a functional description of growth curves, multivariate exploratory data analysis, and graphical displays. This approach is useful for comparing growth curves fitted to a parametric model, and analysis is made easier by the choice of the model whose parameters have a meaning for the biologist. Growth curves were compared using principal component analysis (PCA) adapted to the table of estimated parameters. Growth curves of 120 fruits were fitted to a model that assumes two growth phases. The first one described the pit growth and the first part of the flesh growth. The second described the second part of the flesh growth. From PCA, firstly it was seen that fruit growth varied according to cumulated growth during both growth phases and to date of maximal absolute growth. Secondly, fruit growth varied according to cumulated growth and relative growth rates during each phase. Further examples are presented where growth curves were compared for varying fruit number per shoot and leaf: fruit ratio, and for different sources of variation (tree, shoot, and fruit). Growth of individual fruit was not related to fruit number per shoot or to leaf: fruit ratio. Growth variability was especially high between fruit within shoots.