Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Yi-Ying Li x
  • User-accessible content x
Clear All Modify Search
Free access

San-Gwang Hwang, Yi-Ying Li and Huey-Ling Lin

The king oyster mushroom [Pleurotus eryngii (DC.:Fr.) Quél.] is gaining popularity across the world due to its excellent taste, high nutritional quality, medicinal value, and long shelf life. Conventional substrates for king oyster mushroom cultivation consist of sawdust derived from various tree species. Sawdust demand is increasing worldwide, creating a need for alternative materials that can at least partially replace sawdust as substrate for king oyster mushroom. In Taiwan, as in other countries that grow fruit trees, pruned fruit tree branches are an expensive agricultural waste, particularly if they are not recycled or reused. In the present study, we evaluated substrates containing sawdust and different proportions of material ground from pruned wax apple or Indian jujube branches for cultivation of king oyster mushroom. Our results suggested that among all five substrate mixes tested, the best substitute for conventional sawdust (100% sawdust) was a substrate that contained 75% sawdust mixed with 25% materials ground from trimmed wax apple branches (Wax apple 25%). Furthermore, determination of mineral element content, pH, and electrical conductivity (EC) levels of the substrates both before spawn inoculation and after harvesting revealed no significant changes in mineral content, a slight reduction in pH value, and a minor increase in EC levels after cultivation. Taken together, results from this study suggest that agricultural wastes from pruned fruit tree branches can partially replace sawdust as the cultivation substrate for king oyster mushroom.

Free access

Yi-Xuan Kou, Hui-Ying Shang, Kang-Shan Mao, Zhong-Hu Li, Keith Rushforth and Robert P. Adams

Leyland cypress [×Hesperotropsis leylandii (A.B. Jacks. & Dallim.) Garland & G. Moore, Cupressaceae] is a well-known horticultural evergreen conifer in the United Kingdom, United States, Australia, New Zealand, and other countries. As demonstrated by previous studies, this taxon is a hybrid between alaska (nootka) cypress [Callitropsis nootkatensis (D. Don) Oerst. ex D.P. Little] and monterey cypress [Hesperocyparis macrocarpa (Hartw. ex Gordon) Bartel]. However, the genetic background of leyland cypress cultivars is unclear. Are they F1 or F2 hybrids or backcrosses? In this study, six individuals that represent major leyland cypress cultivars and two individuals each of its two putative parental species were collected, and three nuclear DNA regions (internal transcribed spacer, leafy and needly), three mitochondrial (mt) DNA regions (coxI, atpA, and rps3), and two chloroplast (cp) DNA regions (matK and rbcL) were sequenced and analyzed. Sequencing results of nuclear DNA regions revealed that leyland cypress cultivars consist of putative F1 and F2 hybrids as well as backcrosses. Analysis of the cp and mt DNA from six cultivars of leyland cypress revealed that their cytoplasmic (cp and mt) genomes came from alaska cypress. Our findings will provide important instructions and background knowledge on the management of these major leyland cypress cultivars as well as future studies. Meanwhile, alaska cypress and monterey cypress may have diverged with each other ≈46 million years ago. The fact that they can produce fertile hybrids indicates that hybridization events may have played an important role in the evolutionary history of the cypress family (Cupressaceae).

Free access

Shuai-Ping Gao, Kang-Di Hu, Lan-Ying Hu, Yan-Hong Li, Yi Han, Hui-Li Wang, Kai Lv, Yong-Sheng Liu and Hua Zhang

Hydrogen sulfide (H2S) was recently recognized as an endogenous gaseous molecule involved in seed germination, root organogenesis, abiotic stress tolerance, guard cell movement, and delay of senescence in plants. In the present study, we show that H2S participates in the regulation of postharvest ripening and senescence in fresh-cut kiwifruit, Actinidia deliciosa. Fumigation of fresh-cut kiwifruit with the H2S donor sodium hydrosulfide (NaHS) solution prolonged kiwifruit storage time and alleviated senescence and tissue softening in a dose-dependent manner at an optimal concentration of 1.0 mmol·L−1 NaHS. H2S treatment maintained higher levels of reducing sugars, soluble proteins, free amino acids, ascorbate, and chlorophyll and lowered carotenoid levels. H2S treatment also significantly decreased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2 ) during fruit storage compared with water controls. Furthermore, the activities of guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased by H2S treatment, whereas the activity of lipoxygenase (LOX) was decreased compared with untreated controls. Taken together, these results suggest that H2S is involved in prolonging postharvest shelf life and plays an antioxidative role in fresh-cut kiwifruit.