Search Results

You are looking at 1 - 10 of 10 items for

  • Author or Editor: Sheng Li x
  • User-accessible content x
Clear All Modify Search
Free access

Xiaogang Li, Ling Jin, Zhongchun Jiang*, Nianjun Teng and Baolong Sheng

The freezing method combined with enzymolysis was used to determine the content of stone cells of 70 pear varieties for the purpose of identifying the relationship between the content of stone cells and pulp quality. The results demonstrated that the content of stone cells was strongly correlated with pear quality. The majority of the stone cells in all the varieties had diameters of 0.25-0.5 mm; the weight of the stone cells with diameters in this range differed significantly among pear varieties. In addition, the varieties with a higher content of stone cells contained a higher content of coarse pulp than the varieties with a lower content of stone cells.

Open access

Sheng Li, Feng Wu, Yongping Duan, Ariel Singerman and Zhengfei Guan

Citrus huanglongbing (HLB), or greening, is the most destructive citrus disease worldwide and is threatening the sustainability of the industry in major citrus-growing regions. Various treatments have been proposed in the literature to manage the disease. We review such literature and conduct an economic analysis based on the reported treatment effects on fruit yield and quality to identify cost-effective management strategies. Our results suggest that, among the treatments we reviewed, broad-spectrum insecticides provide the only cost-effective strategy for mitigating the impact of the disease. Our findings and discussion should help growers, policymakers, and other stakeholders make informed decisions in the search for effective, sustainable, and environmentally friendly treatments and policies against HLB.

Free access

Qing Xu, Shi-Rong Guo, He Li, Nan-Shan Du, Sheng Shu and Jin Sun

The use of grafted seedlings in vegetable crops has increased in recent years to enhance the resistance to biological and abiotic stresses, and improve yields. However, incompatibility restricts the wide application of grafting. In this study, two pumpkin (Cucurbita) cultivars, with great differences in grafting affinity and symbiotic affinity, were used as rootstocks and cucumber (Cucumis sativus) seedlings were used as the scion. The effects of compatibility or incompatibility on histological aspects, antioxidant enzyme activities, phenylpropanoid contents, and chlorophyll fluorescence were studied. The results showed that compatible graft combinations present a stronger resistance to the oxidative damage resulting from grafting and had relatively weak phenylpropanoid metabolisms. The results also indicated that the chlorophyll fluorescence levels of incompatible combinations were lower, except compared with the original fluorescence. Finally, a necrotic layer existed earlier in compatible graft combinations. These differences at the morphological, physiological, and cellular levels may govern compatibility and incompatibility, and may provide valuable information for determining the symbiotic affinity of grafted seedlings at an early stage.

Free access

Gang-Yi Wu, Jun-Ai Hui, Zai-Hua Wang, Jie Li and Qing-Sheng Ye

Photosynthetic physiology of Dendrobium nobile, Dendrobium pendulum, Dendrobium chrysotoxum, and Dendrobium densiflorum was studied. A bimodal diurnal variation of the net photosynthetic rate (Pn) was observed in the four Dendrobium species with the first peak [5.09 to 6.06 μmol (CO2) per m−2·s−1] ≈1100 hr and the second peak [3.83 to 4.58 μmol (CO2) per m−2·s−1] at 1500 hr. No CO2 fixation was observed at night. For all four Dendrobium species, the light compensation point (LCP) was 5 to 10 μmol·m−2·s−1, light saturation point (LSP) ranged from 800 to 1000 μmol·m−2·s−1, apparent quantum yield (AQY) was 0.02, and CO2 compensation points (CCP) and saturation point (CSP) were 60 to 85 μmol·mol−1 and 800 to 1000 μmol·mol−1, respectively. Carboxylation efficiency (CE) values ranged from 0.011 to 0.020. The optimum temperature for photosynthesis was between 26 and 30 °C. The measurement of Pn seasonal variation indicated that July to August had the higher Pn for Dendrobium species. Additionally, the chlorophyll a/b (Chl a/b) ratios of the leaves were 2.77 to 2.89. Measurement of key enzymes in the photosynthetic pathway indicated relatively high Ribulose-1,5-bisphosphate carboxylase (RuBPCase) and glycolate oxidase (GO) activities but very low phosphoenolpyruvate carboxylase (PEPCase) activities. It suggested that these four Dendrobium species are typical semishade C3 plants.

Free access

Jun Tang, Kang-Di Hu, Lan-Ying Hu, Yan-Hong Li, Yong-Sheng Liu and Hua Zhang

Hydrogen sulfide (H2S) has been shown to be a gaseous molecule in the regulation of many processes in plants such as abiotic stress tolerance, root organogenesis, stomatal movement, and postharvest fruit senescence. We studied the role of H2S in the regulation of senescence and fungal decay in fresh-cut sweetpotato (Ipomoea batatas L., cv. Xushu 18) roots. H2S donor sodium hydrosulfide (NaHS) alleviated senescence in fresh-cut sweetpotato root tissue in a dose-dependent manner with the optimal concentration of 2.0 mmol·L−1 NaHS solution. At the optimal concentration of 2.0 mmol·L−1 NaHS, H2S fumigation maintained higher levels of reducing sugar in sweetpotato fresh-cut root. H2S treatment also significantly increased the activities of guaiacol peroxidase (POD) and decreased those of polyphenol oxidase (PPO) in sweetpotato during storage. Further investigation showed that H2S treatment maintained a lower level of lipoxygenase (LOX) activity compared with water control. Consistently, the accumulation of malondialdehyde (MDA) was reduced in H2S-treated groups. Three fungal pathogens, Rhizopus nigricans, Mucor rouxianus, and Geotrichum candidum, were isolated from sweetpotato tissue infected with black rot or soft rot. H2S fumigation at 1 to 2.5 mmol·L−1 NaHS resulted in effective inhibition of the three fungi when grown on medium. When the three fungi were inoculated on the surface of sweetpotato slices, H2S fumigation greatly reduced the percentage of fungal infection. In conclusion, these data suggest that H2S effectively alleviated the senescence and decay in sweetpotato slices and might be developed into a novel fungicide for reduction of black rot or soft rot in sweetpotato.

Full access

Xiu Cai Fan, Hai Sheng Sun, Ying Zhang, Jian Fu Jiang, Min Li and Chong Huai Liu

In this study, simple sequence repeat (SSR) and sequence-related amplified polymorphism (SRAP) markers were used to analyze the genetic diversity of 48 wild Vitis davidii accessions. A total of 78 distinct alleles were amplified by 11 SSR primers, and the average allele number was 8.8. The average observed heterozygosity (Ho) and expected heterozygosity (He) values were 0.785 and 0.814, respectively. The effective allele numbers ranged from 3.92 to 9.61. The average polymorphism information content (PIC) was 0.798. Twelve of 169 SRAP primer combinations were selected for SRAP analysis. A total of 188 bands were produced, and the average was 15.7 bands per primer combination; the average percentage of polymorphic bands was 84.0%. The average PIC was 0.76. The results of the clustering analysis based on SSR markers showed that the 48 wild V. davidii accessions could be classified into five main clusters and had a genetic similarity coefficient level of 0.68. The dendrogram obtained from the SRAP data showed that 48 wild V. davidii accessions could be classified into five main clusters and had a genetic similarity coefficient of 0.72. SSR and SRAP markers differentiated all accessions studied including those with a similar pedigree. We speculated on the origin of Ciputao 0941♀, Ciputao 0940♂, and Fu’an-ci-01 using SSR markers and used both SSR and SRAP markers to resolve homonymy. The result will be valuable for further management and protection of V. davidii germplasm resources.

Free access

Sheng-Xi Liao, Xian-Jie Mi, Ai-Zhong Liu, Kun Li, Zhen-Yin Yang and Bo Tian

The Chinese Incense-cedar (Calocedrus macrolepis Kruz), an important wood and ornamental tree, is native to southwest China and also in northern Vietnam, Laos, Thailand, and Myanmar. As a result of ecological degradation in these areas, Chinese Incense-cedar was considered a vulnerable species according to the criteria of the International Union for the Conservation of Nature and Natural Resources. In the current report, we developed and characterized 13 novel microsatellite markers for this species using the protocol of fast isolation by amplified fragment length polymorphism of sequences containing repeats. Polymorphism of each locus was assessed in 36 individuals from nine geographical populations. The number of alleles per locus ranged from two to nine with an average of 6.08. The observed and expected heterozygosities ranged from 0.0000 to 1.0000 and from 0.1549 to 0.8912 with averages of 0.6688 and 0.6815, respectively. Four of the 13 loci were significantly deviated from Hardy-Weinberg expectations. No significant linkage disequilibrium was detected. These polymorphic microsatellite markers would be useful tools for investigating genetic population structure and diversity to establish conservation strategy for this interesting and vulnerable species.

Free access

Bin Cai, Cheng-Hui Li, Ai-Sheng Xiong, Ri-He Peng, Jun Zhou, Feng Gao, Zhen Zhang and Quan-Hong Yao

The database of grape transcription factors (DGTF) is a plant transcription factor (TF) database comprehensively collecting and annotating grape (Vitis L.) TF. The DGTF contains 1423 putative grape TF in 57 families. These TF were identified from the predicted wine grape (Vitis vinifera L.) proteins from the grape genome sequencing project by means of a domain search. The DGTF provides detailed annotations for individual members of each TF family, including sequence feature, domain architecture, expression information, and orthologs in other plants. Cross-links to other public databases make its annotations more extensive. In addition, some other transcriptional regulators were also included in the DGTF. It contains 202 transcriptional regulators in 10 families.

Free access

Shuai-Ping Gao, Kang-Di Hu, Lan-Ying Hu, Yan-Hong Li, Yi Han, Hui-Li Wang, Kai Lv, Yong-Sheng Liu and Hua Zhang

Hydrogen sulfide (H2S) was recently recognized as an endogenous gaseous molecule involved in seed germination, root organogenesis, abiotic stress tolerance, guard cell movement, and delay of senescence in plants. In the present study, we show that H2S participates in the regulation of postharvest ripening and senescence in fresh-cut kiwifruit, Actinidia deliciosa. Fumigation of fresh-cut kiwifruit with the H2S donor sodium hydrosulfide (NaHS) solution prolonged kiwifruit storage time and alleviated senescence and tissue softening in a dose-dependent manner at an optimal concentration of 1.0 mmol·L−1 NaHS. H2S treatment maintained higher levels of reducing sugars, soluble proteins, free amino acids, ascorbate, and chlorophyll and lowered carotenoid levels. H2S treatment also significantly decreased the contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion (O2 ) during fruit storage compared with water controls. Furthermore, the activities of guaiacol peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were increased by H2S treatment, whereas the activity of lipoxygenase (LOX) was decreased compared with untreated controls. Taken together, these results suggest that H2S is involved in prolonging postharvest shelf life and plays an antioxidative role in fresh-cut kiwifruit.

Full access

Phu-Long Pham, Ying-Xue Li, He-Rong Guo, Rui-Zhen Zeng, Li Xie, Zhi-Sheng Zhang, Jianjun Chen, Qing-Lian Su and Qing Xia

Dendrobium officinale Kimura et Migo is a famous traditional Chinese medicinal plant. It produces various phytochemicals, particularly polysaccharides, which have nutraceutical and pharmaceutical values. To increase its biomass production and polysaccharide content, our breeding program has generated a series of polyploid cultivars through colchicine treatment of protocorm-like bodies (PLBs). The present study compared two tetraploid cultivars, 201-1-T1 and 201-1-T2, with their diploid parental cultivar, 201-1, in an established in vitro culture system. Tetraploid ‘201-1-T1’ and ‘201-1-T2’ had shorter leaves and shorter and thicker stems and roots, and they produced higher biomass compared with the diploid cultivar. The length and width of stomata significantly increased, but stomatal density decreased in tetraploid cultivars. The PLB induction rates from the stem node explants of the tetraploid cultivars were significantly higher than those of diploid. However, the PLB proliferation of tetraploids was lower than that of the diploid. The mean number of plantlets regenerated from tetraploid PLBs was also lower than that of the diploid after 4 months of culture. Polysaccharide contents in stems, leaves, and roots of 6-month-old tetraploid plantlets were significantly higher than those of diploids. The polysaccharide content in the stem of ‘201-1-T1’ was 12.70%, which was a 2-fold increase compared with the diploid cultivar. Our results showed that chromosome doubling could be a viable way of improving D. officinale in biomass and polysaccharide production.